Today's Challenge: Study the table. Use the patterns you have found to extend the table by filling in the blanks.

<table>
<thead>
<tr>
<th>Multiples of Two</th>
<th>Digit in Tens Place</th>
<th>Digit in Ones Place</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

11. What patterns do you expect to see in the tens and ones places from 40 on?

12. Color in the multiples of two on the hundred chart.

13. Describe the patterns you see in the colored hundred chart.

14. Why do you think that all multiples of two are divisible by two?

On today's activity: (Circle one) I did great! I did OK! I need some help.

Name

Date 1
Today’s Challenge Use the words from the box to match the descriptions. You will not use all of the words.

1. You measure your weight this way. One of these equals 16 ounces.
2. When you drive around the United States, you measure distance this way.
3. This measure names 2000 pounds. Sometimes cars or elephants are measured with this unit.
4. You use this tool to measure a line on a piece of paper. You can’t easily bend it.
5. This measure is eight fluid ounces. There are four in a quart. You might drink cocoa in something with this name.
6. This special ruler bends easily. You can use it to measure around your waist or around your head.
7. There are 12 of these in a year. They have 28–31 days.
8. You use one of these to measure temperature—sometimes in your mouth and sometimes outside.
9. You can step on one of these to find out how much you weigh.
10. Four quarts make one of these. Often this unit is used for milk or gas.

thermometer
pound
ruler
scale
mile
ton
tape measure
gallon
cup
month
week
year

Go Further Write what you think.

11. If you saw the number 12 you might think it was eggs in a dozen, numbers on a clock, inches in a foot, or months in a year. Tell what the numbers 4 and 7 make you think of.

On today’s activity: (Circle one) I did great! I did OK. I need some help.
Get Started

1. Triangle with sides 4 cm, 4 cm, and 4 cm.

Perimeter = _______ centimeters

2. Triangle with sides _______ in., _______ in., and _______ in.

Perimeter = 15 inches

Go Further

3. Solve this riddle.
 CLUES:
 - I am an equilateral triangle.
 - My perimeter is equal to the number of inches in a yard.
 - I have sides whose lengths are a multiple of 3 and a multiple of 4.

 What is the length of each of my sides? _______ inches

4. Fill in the blanks to make a Perimeter Riddle.
 CLUES:
 - I am a ____________________.

 - I have a perimeter equal to ____________________.

 - I have sides whose lengths are multiples of ______________.

 What is the length of each of my sides? ____________

5. Write your own riddle for a friend to solve.

 CLUES:

 What is the length of each of my sides? ________________

 Friend's name ____________________

On today's activity: (Circle one) I did great! I did OK. I need some help.
Today's Challenge: Look for pairs of numbers with sums greater than nine and less than nineteen.

Write the facts in the table.

<table>
<thead>
<tr>
<th>sum of 10</th>
<th>sum of 11</th>
<th>sum of 12</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sum of 13</td>
<td>sum of 14</td>
<td>sum of 15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sum of 16</td>
<td>sum of 17</td>
<td>sum of 18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Go Further: Create your own Math Jumble. Include at least one pair of digits for each sum greater than nine and less than nineteen. Have a friend use the digits to write ten facts with sums greater than nine and less than nineteen.

Friend's name:

On today's activity: (Circle one) I did great! I did OK. I need some help.
Get Started Rule out two. Write why. Fill in the correct circle.

Mrs. Seamster is training to run in the Boston Marathon next year. The marathon is 26 miles long. Which unit of measure would be the most reasonable to use to express 26 miles using the metric system?

A millimeters
B yards
C meters
D kilometers

Today's Challenge

1. Mr. Quincy is showing his son, David, how to use dental floss. He is showing David how much floss to pull from the container. Which unit of measure would be the most reasonable length of floss for David to use?

A meter
B foot
C centimeter
D millimeter

2. Men’s shirts are labeled and arranged by the circumference of (length around) a man’s neck. Mr. McCann told the sales clerk that he needed a size 16. To which unit of measure is Mr. McCann probably referring?

A inches
B centimeters
C meters
D feet

Total points for Today's Challenge:

On today’s activity: (Circle one) I did great! I did OK. I need some help.

Name Date
Today's Challenge: Study the table. Fill in the blanks.

<table>
<thead>
<tr>
<th>Multiples of Three</th>
<th>Digit Sums</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>12</td>
<td>1 + 2 = 3</td>
</tr>
<tr>
<td>15</td>
<td>1 + 5 = 6</td>
</tr>
<tr>
<td>18</td>
<td>____ + ____ = 9</td>
</tr>
<tr>
<td>24</td>
<td>2 + 4 = ____</td>
</tr>
<tr>
<td></td>
<td>____ + 7 = 9</td>
</tr>
<tr>
<td>30</td>
<td>3 + 0 = 3</td>
</tr>
<tr>
<td></td>
<td>3 + 3 = ____</td>
</tr>
</tbody>
</table>

Go Further

8. What happens when you add the digits of 39? ____________________________

Is that answer a one-digit sum? __________________

What do you think you need to do to find the digit sum? __________________

9. Study the sums in the right column of the table above.

Do you notice a pattern? _______________

What pattern do you notice? ____________________________

10. Make up a rule to help you decide whether a number is a multiple of three.

11. List some numbers to use to test your new rule. ____________________________

What did you find out? ____________________________

On today's activity: (Circle one) I did great! I did OK. I need some help.
Today’s Challenge Multiply without using a calculator. Write the answers, then put the answers in order.

1. What is $2 \times 3 \times 5$?
2. What is $2 \times 2 \times 2$?
3. What is $2 \times 7 \times 7$?
4. What is 2×3?
5. What is 5×5?
6. What is 2×5?
7. What is $5 \times 5 \times 2 \times 7$?
8. What is 2×7?
9. What is 3×7?
10. What is $3 \times 3 \times 3 \times 2$?

11. Write the answers to exercises 1–10 in order, from least to greatest.

Go Further Find factors for the numbers. If your factors are not prime numbers, find the prime factors.

Example

$72 = \boxed{9} \times \boxed{8}$

$\boxed{9} = 3 \times 3$

$\boxed{8} = 2 \times 4 = \boxed{2 \times 2 \times 2}$

So, $72 = \boxed{3 \times 3} \times \boxed{2 \times 2 \times 2}$

12. Factor 63.

13. Factor 45.

On today’s activity: (Circle one) I did great! I did OK. I need some help.
Today's Challenge Find an object that answers each riddle.

1. I am more than \(\frac{2}{12}\) of a foot long but less than \(\frac{6}{12}\) of a foot long.
 What am I? __________________________

2. I am more than \(\frac{1}{3}\) of a yard long but less than \(\frac{2}{3}\) of a yard long.
 What am I? __________________________

Go Further Fill in the blanks with fractions to make a measurement riddle.

3. **Clues:**
 - I am more than _______ of a foot long.
 - I am less than _______ of a yard long.
 What am I? __________________________

4. Write your own riddle for a friend to solve.
 Clues:

 What am I? ______________________________________

 Friend’s name __________________________

On today's activity: (Circle one) I did great! I did OK. I need some help.
Today's Challenge: Look for strings of digits that can be used to write subtraction equations. Subtract from two-digit numbers less than 18.

Write ten subtraction equations.

Go Further: Complete the subtraction equations.

14 - 8 = _____
24 - 8 = _____
74 - 8 = _____
104 - 8 = _____

18 - 9 = _____
38 - 9 = _____
108 - 9 = _____
308 - 9 = _____

Explain your strategies for solving the problems. Write about patterns that you discover while solving.

On today's activity: (Circle one) I did great! I did OK. I need some help.

Name

Date
Get Started Rule out two. Write why. Fill in the correct circle.

How many vertices (corners) are on a cube?

A 12
B 10
C 8
D 6

Today’s Challenge

1. How many edges are on a rectangular prism?

A 12
B 10
C 8
D 6

2. Serina and her sister played a board game after school. Serina rolled two dot cubes to start the game. How many faces are on two dot cubes?

A 10
B 12
C 14
D 16

Total points for Today’s Challenge:

On today’s activity: (Circle one) I did great! I did OK. I need some help.
Today's Challenge: Study the table. Use the patterns you have found to fill in the blanks.

<table>
<thead>
<tr>
<th>Multiples of Two</th>
<th>Multiples of Three</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>12</td>
<td>18</td>
</tr>
<tr>
<td>14</td>
<td>21</td>
</tr>
<tr>
<td>16</td>
<td>24</td>
</tr>
<tr>
<td>18</td>
<td>27</td>
</tr>
<tr>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>22</td>
<td>33</td>
</tr>
<tr>
<td>24</td>
<td>36</td>
</tr>
</tbody>
</table>

1. 26
2. 42
3. 30
4. 48
5. 34
6. 54
7. 38
8. 60
9. 42
10. 66
11. 46
12. 72
13. 50

Go Further:

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>11</td>
<td>9</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>29</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>40</td>
<td>41</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>49</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>51</td>
<td>52</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>60</td>
<td>61</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>63</td>
<td>64</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>66</td>
<td>67</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>69</td>
<td>70</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>71</td>
<td>72</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>74</td>
<td>75</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>77</td>
<td>78</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>80</td>
<td>81</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>83</td>
<td>84</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>86</td>
<td>87</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>89</td>
<td>90</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>92</td>
<td>93</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>95</td>
<td>96</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>98</td>
<td>99</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

14. Color or shade the multiples of two on the hundred chart.
15. Describe the patterns you see.

On today’s activity: (Circle one) I did great! I did OK. I need some help.

Name

Date 11
Today's Challenge Organize the terms in the box by putting them in the correct group.

1. These are words that are related to addition or subtraction.

 ___________________________ ___________________________
 ___________________________ ___________________________
 ___________________________ ___________________________

2. These are words that are related to multiplication.

3. These are words that are related to division.

4. These are words that are related to fractions.

Go Further

5. List five other mathematical terms that you know. Give an example for each term.

On today's activity: (Circle one) I did great! I did OK. I need some help.

12 Name Date
Go Further Solve the riddles.

1. **Clues:**
 - I am an estimate for 586 – 98.
 - I was found by using a rounding strategy.
 - I am a number greater than 300 and less than 600.

What number am I? _________

2. **Clues:**
 - I am an estimate for 342 – 95.
 - I was found by using a rounding strategy.
 - I am a number greater than 210 and less than 300.

What number am I? _________

3. Fill in the blanks to make and solve your riddle.

Clues:
 - I am an estimate for _______ – _______.
 - I was found by using ___________________ strategy.
 - I am a number greater than _______ and less than _______.

What number am I? _________

4. Now write your own riddle for a friend to solve.

Clues: ____________________________

What number am I? _________

Friend’s name ___________________

On today’s activity: (Circle one) I did great! I did OK. I need some help.
Today’s Challenge Look for strings of digits that can be used to write addition and subtraction equations that have even-number answers.

Write the equations.

Go Further Create your own Math Jumble.
Include at least four pairs of numbers that can be added or subtracted to get even-number answers.
Have a friend use the Math Jumble to write four addition or subtraction problems with even-number answers.

Friend’s name __________________________

On today’s activity: (Circle one) I did great! I did OK. I need some help.

© Great Source. Permission is granted to copy this page.
Get Started Rule out two. Write why. Fill in the correct circle.

Which of these numbers is evenly divisible by 2?

A 37
B 52
C 71
D 93

Today’s Challenge

1. Which of these numbers is evenly divisible by 2?
 A 231
 B 247
 C 259
 D 270

2. Which of these expressions has a sum evenly divisible by 2?
 A 333 + 259
 B 150 + 741
 C 700 + 185
 D 596 + 383

Total points for Today’s Challenge: __________

On today’s activity: (Circle one) I did great! I did OK. I need some help.

Name ___________________________ Date ______
Today's Challenge: Study the table. Use the patterns you find to help you fill in the blanks.

<table>
<thead>
<tr>
<th>Multiples of Five</th>
<th>Digit in Tens Place</th>
<th>Digit in Ones Place</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>30</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>35</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>40</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>45</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>50</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>55</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>60</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>65</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>70</td>
<td>7</td>
<td>0</td>
</tr>
</tbody>
</table>

8. Do you think the patterns in the ones and tens places will change for three-digit numbers?

Explain your answer.

9. Color the multiples of five on the hundred chart.

10. Describe the patterns you see.

On today's activity: (Circle one) I did great! I did OK. I need some help.
Today’s Challenge Find my number.

1. Taking two away from my number leaves four. What is my number?

2. Four times my number equals 12. What is my number?

3. Twice my number is 20. What is my number?

4. Half of 22 is my number. What is my number?

5. Three times my number is 42. What is my number?

6. I can divide anything by my number and the number won’t change. What is my number?

7. Five times my number is sixty. What is my number?

8. \(\frac{1}{5} \) of 45 is my number. What is my number?

9. My number is \(\frac{1}{3} \) of 51. What is my number?

10. When you multiply my number by itself, the product is 49. What is my number?

Go Further

Friend’s name

On today’s activity: (Circle one) I did great! I did OK. I need some help.
Go Further Follow the directions to cross out the numbers.

<table>
<thead>
<tr>
<th>30</th>
<th>20</th>
<th>7</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>18</td>
<td>42</td>
<td>6</td>
</tr>
<tr>
<td>70</td>
<td>72</td>
<td>66</td>
<td>12</td>
</tr>
<tr>
<td>54</td>
<td>36</td>
<td>50</td>
<td>60</td>
</tr>
</tbody>
</table>

- Cross out all numbers that are multiples of both 6 and 10.
- Cross out all numbers less than or equal to 6×2.
- Cross out all numbers greater than the number of cents in six dimes.
- Cross out all numbers less than the number of cents in six nickels.
- Cross out all numbers more than 6×6.

1. Which number is not crossed out? ________

2. Write at least 3 things that describe that number.

On today’s activity: (Circle one) I did great! I did OK. I need some help.
Today’s Challenge Look for strings of digits to make multiplication equations with 5 as one of the factors.

Write the equations.

Go Further What patterns do you see in the products when you multiply numbers by 5? Explain your answer.

On today’s activity: (Circle one) I did great! I did OK. I need some help.

Name Date
Get Started
Rule out two. Write why. Fill in the correct circle.

Which list shows the decimals 0.4, 0.34, 0.04, and 0.3 ordered from least to greatest?

A 0.3, 0.04, 0.4, 0.34
B 0.3, 0.4, 0.04, 0.34
C 0.04, 0.3, 0.34, 0.4
D 0.04, 0.34, 0.3, 0.4

Today’s Challenge

1. Which list shows the decimals 0.68, 0.8, 0.08, 0.86 ordered from least to greatest?

A 0.08, 0.68, 0.8, 0.86
B 0.8, 0.08, 0.68, 0.86
C 0.68, 0.08, 0.8, 0.86
D 0.08, 0.8, 0.68, 0.86

2. Which list shows the decimals 0.12, 0.1, 0.01, and 0.21 ordered from greatest to least?

A 0.21, 0.12, 0.01, 0.1
B 0.21, 0.12, 0.1, 0.01
C 0.1, 0.01, 0.12, 0.21
D 0.01, 0.1, 0.12, 0.21

Total points for Today’s Challenge:

On today’s activity: (Circle one) I did great! I did OK. I need some help.
Today's Challenge Study the table. Find the digit sums.

<table>
<thead>
<tr>
<th>Multiples of Nine</th>
<th>Digit Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>99</td>
<td>9</td>
</tr>
<tr>
<td>108</td>
<td></td>
</tr>
<tr>
<td>117</td>
<td></td>
</tr>
<tr>
<td>126</td>
<td></td>
</tr>
<tr>
<td>135</td>
<td></td>
</tr>
<tr>
<td>144</td>
<td></td>
</tr>
<tr>
<td>153</td>
<td></td>
</tr>
<tr>
<td>162</td>
<td></td>
</tr>
<tr>
<td>171</td>
<td></td>
</tr>
<tr>
<td>180</td>
<td></td>
</tr>
</tbody>
</table>

10. Write a rule for deciding whether a number is a multiple of nine.

__

__

11. Do you think this rule for multiples of nine always works? ____________

How could you test it? ______________

__

12. List some other numbers to use to test your new rule.

__

Go Further

13. Fill in the table.

14. Make up a large number that is evenly divisible by nine. ____________

How do you know it is evenly divisible by nine?

__

15. Why might it be helpful to know if a number is a multiple of nine or is evenly divisible by nine?

__

On today's activity: (Circle one) I did great! I did OK. I need some help.

Name ________________________________ Date ________________________________
Today's Challenge Organize the terms in the box by putting them in the correct group.

1. These are words that describe different quadrilaterals (polygons with four sides).

 rhombus hexagon sphere
 parallelogram pentagon octagon
 triangle cylinder trapezoid
 square cube rectangle

2. These are words that describe polygons that are not quadrilaterals.

3. These are words that describe three-dimensional figures.

Go Further

4. Order these polygons using the number of sides they have, from fewest to most.

 trapezoid octagon triangle pentagon hexagon

On today's activity: (Circle one) I did great! I did OK. I need some help.
Get Started Fill in the blanks.

1.

 \begin{array}{c}
 \text{4 cm} \\
 \text{4 cm} \\
 \text{4 cm}
 \end{array}

Perimeter = \underline{ \quad \quad } \text{ centimeters}

2.

 \begin{array}{c}
 \underline{ \quad \quad } \text{ in.} \\
 \underline{ \quad \quad } \text{ in.} \\
 \underline{ \quad \quad } \text{ in.}
 \end{array}

Perimeter = 44 \text{ inches}

Go Further

3. Solve this riddle.

 \text{CLUES:}
 \begin{itemize}
 \item I am a square.
 \item I have a perimeter equal to the number of inches in \(1\frac{1}{3}\) yards.
 \item I have sides whose lengths are multiples of 2, 3, 4, and 6.
 \end{itemize}

 What is the length of each of my sides? \underline{ \quad \quad } \text{ inches}.

4. Fill in the blanks to make a Perimeter Riddle.

 \text{CLUES:}
 \begin{itemize}
 \item I am a \underline{ \quad \quad }.
 \item I have perimeter equal to \underline{ \quad \quad }.
 \item I have sides whose lengths are multiples of \underline{ \quad \quad }.
 \end{itemize}

 What is the length of each of my sides? \underline{ \quad \quad }

5. Now write your own riddle for a friend to solve.

 \text{CLUES:}

 What is the length of each of my sides? \underline{ \quad \quad }

 Friend’s name \underline{ \quad \quad }

On today’s activity: (Circle one) I did great! I did OK. I need some help.
Today's Challenge: Look for strings of digits to make multiplication equations with 9 as one of the factors.

Write the equations.

What patterns do you see when multiplying by 9? Explain your answer.

Go Further: Create your own Math Jumble. Include at least five multiplication equations that have 9 as a factor. Have a friend use the Math Jumble to write five multiplication equations with 9 as a factor.

Friend’s name

On today’s activity: (Circle one) I did great! I did OK. I need some help.

24 Name

Date
Get Started Rule out two. Write why. Fill in the correct circle.

Clyde displayed 278 CDs in the music store this morning. He displayed 435 CDs in the afternoon. About how many CDs did Clyde display today?

A between 500 and 600
B between 600 and 700
C between 700 and 800
D more than 800

Today’s Challenge

1. Nasar saved $236 last month by doing yard work for his neighbors. He has already saved $148 this month. About how much money has Nasar saved so far?

A between $100 and $200
B between $200 and $300
C between $300 and $400
D more than $400

2. Leonard works as an operator for a major telephone company. Last week he answered 491 telephone calls. This week he answered 429 telephone calls. About how many telephone calls has Leonard answered in the past two weeks?

A between 900 and 1000
B between 800 and 900
C between 700 and 800
D less than 700

Total points for Today’s Challenge:

On today’s activity: (Circle one) I did great! I did OK. I need some help.

Name
Date
Today’s Challenge

1. In the space below, draw some rectangular arrays that can be made up of 24 items.

2. Share your drawings with a friend. Do you both have the same arrays? ________________
 Friend’s name ____________________________

3. Describe the arrays that your friend has that you do not have. __________________________________
 __

4. Combine your lists. Are there any arrays that give the same factors? __________
 If so, keep only one.

5. Name all the factors of 24. __

Go Further

6. In the space below, draw some rectangular arrays that can be made up of 36 items.

7. Name all the factors of 36. __

On today’s activity: (Circle one) I did great! I did OK. I need some help.
Today's Challenge Fill in the blanks in this chart to show decimals and fractions that are equivalent. Write fractions in simplest form.

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>$\frac{4}{5}$</td>
</tr>
<tr>
<td>2.</td>
<td>0.75</td>
</tr>
<tr>
<td>3.</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>4.</td>
<td>0.25</td>
</tr>
<tr>
<td>5.</td>
<td>0.6</td>
</tr>
<tr>
<td>6.</td>
<td>$\frac{1}{10}$</td>
</tr>
<tr>
<td>7.</td>
<td>0.2</td>
</tr>
<tr>
<td>8.</td>
<td>$\frac{3}{5}$</td>
</tr>
<tr>
<td>9.</td>
<td>0.125</td>
</tr>
<tr>
<td>10.</td>
<td>$\frac{3}{6}$</td>
</tr>
</tbody>
</table>

Go Further

11. Write these fractions and decimals in order from least to greatest.

On today's activity: (Circle one) I did great! I did OK. I need some help.

Name

Date
Today's Challenge Complete the table.

<table>
<thead>
<tr>
<th>Word Form</th>
<th>Fraction Form</th>
<th>Fraction Form</th>
<th>Decimal Form</th>
<th>Percent Form</th>
</tr>
</thead>
</table>
| **1. one tenth** | \[
\frac{1}{10}
\]
\[
\frac{1}{100}
\]

| **2. one tenth** | \[
\frac{1}{40}
\]
\[
\frac{1}{70}
\]
| **0.10** | **-** |

| **3. one fifth** | \[
\frac{1}{5}
\]
\[
\frac{1}{10}
\]

| **20%** | **-** |

| **4. one hundredth** | \[
\frac{1}{100}
\]
\[
\frac{1}{1000}
\]

On today's activity: (Circle one)
- I did great!
- I did OK.
- I need some help.
Today’s Challenge: Look for strings of digits to make multiplication equations with 9 as one of the factors.

9981
1121
0990
9058

Write the equations.

Go Further: Create your own Math Jumble. Include at least five multiplication equations that have 9 as a factor. Have a friend use the Math Jumble to write five multiplication equations with 9 as a factor.

Friend’s name

On today’s activity: (Circle one) I did great! I did OK. I need some help.

Name

Date
Get Started Rule out two. Write why. Fill in the correct circle.

Most of the nail polish on Rowan’s fingers has chipped off. She removes the rest with a cotton ball and nail polish remover. Which unit is best used to measure the amount of nail polish remover in the cotton ball?

A ounce
B cup
C liter
D milliliter

Today’s Challenge

1. Andre filled his dog’s bowl to the top with water. He had to make four trips to the sink to refill his cup. How much water does the dog’s bowl probably hold?

 A 1 quart
 B 3 liters
 C 4 pints
 D 6 milliliters

2. Mrs. Bryant bought a gallon of juice for her son’s bowling team. If there are four players on the team, how many cups of juice will each be able to drink if they share the gallon equally among themselves?

 A 2 cups
 B 4 cups
 C 6 cups
 D 8 cups

Total points for Today’s Challenge:

On today’s activity: (Circle one) I did great! I did OK. I need some help.

30 Name

Date
Today's Challenge

1. Think of the rectangular arrays that you have made to determine the factors of 12, 24, and 36. Use that idea to find the factors of four, five, and ten. First draw the arrays. Then list the factors. Last, write the factors in order from least to greatest.

 Factors of Four Factors of Five Factors of Ten
 ______________________ ______________________ ______________________

Go Further

2. Use the rectangular-array method to find the factors of eight.

 Factors of Eight

3. List the factors of eight and of twelve, in order from least to greatest.

4. What factors are in both lists?

5. What advice could you offer to a friend who was having trouble finding all of the factors of any number?

6. Choose another number between 10 and 20. Use your advice from exercise 5 to find all the factors of your number.

 The number ____________ The factors ____________

 How do you know that you have found all the factors?

On today's activity: (Circle one) I did great! I did OK. I need some help.

Name ____________________________ Date _______
Today’s Challenge
Show how much more you would need.

1. How much more milk do I need for my recipe?
 I poured in one cup and I need one quart.

2. When will my cake be done? I put it in at 2:25 P.M.
 and it needs to bake for 45 minutes.

3. How much more ribbon do I need? I have 1 yard,
 2 feet but I need 6 yards, 1 foot.

4. I want to make five dozen cookies. I have already made
 30 cookies. How many more cookies do I need to make?

5. How much longer is the airplane flight? It is now
 9:12 A.M. and the plane lands at 1:02 P.M. (It does not
 change time zones.)

6. How much more money do I need to buy a video
 game? It costs $19.47 and I have saved $6.83.

7. How many more days are there, not including today,
 until my June 12 birthday? It is May 18 today.

8. How much change should I give a customer who paid
 for a $3.09 item with a $10.00 bill?

9. How much longer will I have to wait for a movie that
 starts at 7:30 P.M. if it is 5:15 P.M. right now?

10. I have 5 dollar bills, 12 quarters, 2 dimes and 1 nickel. I
 want to buy a CD for $12.99. How much more do I need?

Go Further

11. How many total hours and minutes
 did it take to finish the project? Explain
 how you got your answer.

<table>
<thead>
<tr>
<th>Day</th>
<th>Time Spent on Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
<td>2 hours, 15 minutes</td>
</tr>
<tr>
<td>Tuesday</td>
<td>3 hours, 40 minutes</td>
</tr>
<tr>
<td>Wednesday</td>
<td>2 hours, 25 minutes</td>
</tr>
<tr>
<td>Thursday</td>
<td>1 hour, 35 minutes</td>
</tr>
<tr>
<td>Friday</td>
<td>4 hours, 50 minutes</td>
</tr>
</tbody>
</table>

On today’s activity: (Circle one) I did great! I did OK. I need some help.

32 Name

Date
Go Further - Solve the riddles.

1. **CUES:**
 - I am an estimate for 3932 + 512.
 - I was found by using a rounding strategy.
 - I am a number greater than 3000 and less than 4500.

 What number am I? __________

2. **CUES:**
 - I am an estimate for 6426 + 295.
 - I was found by using an adding up strategy.
 - I am a number greater than 6700 and less than 6800.

 What number am I? __________

3. Fill in the blanks to make and solve your riddle.
 CUES:
 - I am an estimate for _______ + _______.
 - I was found by using ___________________ strategy.
 - I am a number greater than _______ and less than _______.

 What number am I? __________

4. Now write your own riddle for a friend to solve.
 CUES:

 What number am I? __________
 Friend’s name ________________________

On today’s activity: (Circle one) I did great! I did OK. I need some help.
Today's Challenge Look for strings of digits to make division facts. You must supply the quotient to make each equation.

Write the equations.

Go Further Create your own Math Jumble. Include at least five division facts. Have a friend use the Math Jumble to write five division equations. Your friend must supply the quotient for each equation.

Friend’s name

On today’s activity: (Circle one) I did great! I did OK. I need some help.
Get Started Rule out two. Write why. Fill in the correct circle.

Which of these terms best describes the triangle to the right?

A isosceles
B scalene
C equilateral
D equiangular

Today’s Challenge

1. Which of these terms best describes the triangle to the right?
 A isosceles
 B obtuse
 C scalene
 D equilateral

2. Which of these terms best describes the triangle to the right?
 A scalene
 B isosceles
 C right
 D equilateral

Total points for Today’s Challenge:

On today’s activity: (Circle one) I did great! I did OK. I need some help.

Name Date
Today's Challenge

1. Complete the table.

<table>
<thead>
<tr>
<th>Number</th>
<th>Facts</th>
<th>Factors</th>
<th>Factors in Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1×1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1×2</td>
<td>1, 2</td>
<td>1, 2</td>
</tr>
<tr>
<td>3</td>
<td>1×3</td>
<td>1, 3</td>
<td>1, 3</td>
</tr>
<tr>
<td>4</td>
<td>$1 \times 4, 2 \times 2$</td>
<td>1, 4, 2</td>
<td>1, 2, 4</td>
</tr>
<tr>
<td>5</td>
<td>1×5</td>
<td>1, 5</td>
<td>1, 5</td>
</tr>
<tr>
<td>6</td>
<td>$1 \times 6, 2 \times 3$</td>
<td>1, 6, 2, 3</td>
<td>1, 2, 3, 6</td>
</tr>
<tr>
<td>7</td>
<td>1×7</td>
<td>1, 7</td>
<td>1, 7</td>
</tr>
<tr>
<td>8</td>
<td>$1 \times 8, 2 \times 4$</td>
<td>1, 8, 2, 4</td>
<td>1, 2, 4, 8</td>
</tr>
<tr>
<td>9</td>
<td>$1 \times 9, 3 \times 3$</td>
<td>1, 9, 3</td>
<td>1, 3, 9</td>
</tr>
<tr>
<td>10</td>
<td>$1 \times 10, 2 \times 5$</td>
<td>1, 10, 2, 5</td>
<td>1, 2, 5, 10</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Go Further

2. Examine the columns in the table to find the only number that is a factor of every number in the list. What number is it?

3. Why do you think that it is a factor of all numbers?

4. Write a sentence that explains what you have discovered about the number one.

5. Why do you think some numbers have an odd number of factors?

On today's activity: (Circle one) I did great! I did OK. I need some help.
Today's Challenge Find the least common multiple for each pair of numbers.

Think: multiples of 12: 12, 24, 36, 48, [60], 72, 84, 96
multiples of 15: 15, 30, 45, [60]

The least common multiple of 12 and 15 is 60.

Think: multiples of 4: 4, [8]
multiples of 8: [8]
The least common multiple of 4 and 8 is 8.

1. Find the least common multiple of 2 and 3.
2. Find the least common multiple of 10 and 15.
3. Find the least common multiple of 6 and 12.
4. Find the least common multiple of 4 and 5.
5. Find the least common multiple of 8 and 12.
6. Find the least common multiple of 5 and 3.
7. Find the least common multiple of 9 and 6.
8. Find the least common multiple of 15 and 9.
9. Find the least common multiple of 7 and 3.
10. Find the least common multiple of 10 and 5.

Go Further Write the exercise numbers (1-10) below the description of the answer to that exercise.

11. If the numbers are \(a\) and \(b\), the least common multiple is \(a \times b\).
12. If the numbers are \(a\) and \(b\), then the least common multiple is \(a \times b\).
13. The least common multiple is not described by exercise 11 or 12.

14. When do you think the least common multiple is the product of the two numbers?

On today's activity: (Circle one) I did great! I did OK. I need some help.

Name

Date
Get Started

One Pound

<table>
<thead>
<tr>
<th>1/16 lb or 1 oz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/16 lb or 1 oz</td>
</tr>
</tbody>
</table>

Today's Challenge

Complete the table.

1. 4 ounces ______ pound

2. 6/16 pound ______ ounces

3. ______ pound 12 ounces

4. 1/4 pound ______ ounces

5. 2 ounces ______ pound

6. ______ ounces 1/8 pound

7. ______ pound 6 ounces

8. 3/4 pound ______ ounces

On today's activity: (Circle one) I did great! I did OK. I need some help.

Name

Date
Today's Challenge Look for strings of digits to make multiplication equations that have 4 or 8 as a factor. Write the equations.

<table>
<thead>
<tr>
<th>6 8 4 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 8 9 3</td>
</tr>
<tr>
<td>2 6 7 2</td>
</tr>
<tr>
<td>4 4 1 6</td>
</tr>
</tbody>
</table>

Equations with 4 as a factor

Equations with 8 as a factor

Write at least four more multiplication equations for 4 and 8 that are not shown on the Math Jumble above.

 bloggers

Go Further Create your own Math Jumble. Include at least five multiplication equations that have 4 or 8 as a factor. Have a friend use the Math Jumble to write five multiplication equations that have 4 or 8 as a factor.

Equations with 4 as a factor

Equations with 8 as a factor

Friend’s name

On today’s activity: (Circle one) I did great! I did OK. I need some help.

Name

Date
Get Started Rule out two. Write why. Fill in the correct circle.

What is the value of x in the equation $56 \div 8 = x$?

A $x = 5$

B $x = 6$

C $x = 7$

D $x = 8$

Today’s Challenge

1. What is the value of x in the equation $48 \div 6 = x$?

 A $x = 5$

 B $x = 6$

 C $x = 7$

 D $x = 8$

2. What is the value of x in the equation $54 \div x = 9$?

 A $x = 6$

 B $x = 7$

 C $x = 8$

 D $x = 9$

Total points for Today’s Challenge:

On today’s activity: (Circle one) I did great! I did OK. I need some help.
Today's Challenge
1. Complete the table.

<table>
<thead>
<tr>
<th>Number</th>
<th>Facts</th>
<th>Factors in Order</th>
<th>Number of Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1×1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1×2</td>
<td>1, 2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1×3</td>
<td>1, 3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>$1 \times 4, 2 \times 2$</td>
<td>1, 2, 4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>1×5</td>
<td>1, 5</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>$1 \times 6, 2 \times 3$</td>
<td>1, 2, 3, 6</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>1×7</td>
<td>1, 7</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>$1 \times 8, 2 \times 4$</td>
<td>1, 2, 4, 8</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>$1 \times 9, 3 \times 3$</td>
<td>1, 3, 9</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>$1 \times 10, 2 \times 5$</td>
<td>1, 2, 5, 10</td>
<td>4</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Go Further
2. When a number has exactly two different factors, we call it a prime number. Which numbers less than 20 are prime?

3. When you study the table, you can see that the number one is special. In what ways is the number one special?

4. If all prime numbers have exactly two different factors, is one a prime number? Explain your thinking.

5. Write a paragraph to explain to a friend what you have learned about prime numbers.

On today's activity: (Circle one) I did great! I did OK. I need some help.

Name

Date
Today’s Challenge Fill in this table. The first example is done for you.

<table>
<thead>
<tr>
<th></th>
<th>Multiply (M) or Divide (D)?</th>
<th>Expression</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>There are 22 slices of bread in a loaf of the store brand wheat bread. How many sandwiches can you make from 3 loaves?</td>
<td>M and D</td>
<td>$(3 \times 22) \div 2$</td>
</tr>
<tr>
<td>2.</td>
<td>How many ears are on 29 children?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>How many bulbs are on 25 stoplights?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Take 10 dozen marbles and divide them evenly among five friends and yourself. How many marbles does each of you get?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>How many cents will each person get if a class of 30 students equally shares three dollars, one quarter, and one nickel?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>How many baseball players are needed for 11 games? (Remember: there are nine players on a team and two teams at each game!)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>How many musicians play in three octets? (Remember: oct- means 8!)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>How many days are there in 26 weeks?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>How many dimes are equal to $1.90?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>How many sodas are in 17 six-packs?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>How many quarts of liquid do you have if you have three gallons?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Go Further

12. Write a word problem where you have to multiply or divide. Ask a friend to solve your problem. Check to see that you agree on the answer.

On today’s activity: (Circle one) I did great! I did OK. I need some help.
Get Started
Fill in the blanks.

1.
\[\text{Perimeter} = \underline{______} \text{ centimeters} \]

2.
\[\text{Perimeter} = 48 \text{ feet} \]

Go Further

3. Solve this riddle.

Blue(s):
- I am a regular hexagon.
- My perimeter in inches is equal to the number of minutes in an hour.
- I have sides whose lengths are a multiple of 2 and a multiple of 5.

What is the length of each of my sides? \underline{__________} inches.

4. Fill in the blanks to make a Perimeter Riddle.

Blue(s):
- I am a \underline{__________________________}.
- I have a perimeter equal to \underline{______________}.
- I have sides whose lengths are multiples of \underline{______________}.

What is the length of each of my sides? \underline{__________}

5. Now write your own riddle for a friend to solve.

Blue(s):

What is the length of each of my sides? \underline{__________}

Friend’s name \underline{__________________________}

On today’s activity: (Circle one)
- I did great!
- I did OK.
- I need some help.

Name

Date
Today's Challenge Look for fractions equal to or greater than 1. Rewrite the fractions as whole and mixed numbers. Record your work below.

<table>
<thead>
<tr>
<th>Number</th>
<th>Fraction</th>
<th>Whole or Mixed Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 8 5 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 2 3 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 6 4 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 6 3 8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Go Further Create your own Math Jumble. Include at least five fractions equal to or greater than 1. Have a friend find five fractions greater than or equal to 1 and rewrite them as whole and mixed numbers. Have your friend record his or her work below.

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Whole or Mixed Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Friend's name ____________________________

On today's activity: (Circle one) I did great! I did OK. I need some help.
Get Started Rule out two. Write why. Fill in the correct circle.

Other than zero, what are the first three common multiples of 4 and 8?

A 4, 6, 8

B 8, 10, 12

C 8, 16, 24

D 8, 12, 16

Today’s Challenge

1. Other than zero, what are the first three common multiples of 2 and 5?

A 2, 5, 10

B 5, 10, 15

C 10, 15, 20

D 10, 20, 30

2. Other than zero, what are the first three common multiples of 3 and 6?

A 3, 6, 9

B 6, 9, 12

C 6, 12, 18

D 18, 21, 24

Total points for Today’s Challenge:

On today’s activity: (Circle one) I did great! I did OK. I need some help.
Today's Challenge

1. Fill in the blanks in the table.

<table>
<thead>
<tr>
<th>Number</th>
<th>× 10</th>
<th>× 100</th>
<th>× 1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1416</td>
<td>31.416</td>
<td></td>
<td>3141.6</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>1000</td>
<td>10,010</td>
</tr>
<tr>
<td>7.500</td>
<td>75.00</td>
<td>750.0</td>
<td></td>
</tr>
<tr>
<td>7.501</td>
<td></td>
<td>750.1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td></td>
<td>2000</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>2000</td>
<td>20,000</td>
</tr>
<tr>
<td>100</td>
<td>1000</td>
<td></td>
<td>100,000</td>
</tr>
</tbody>
</table>

Go Further

2. When you multiply a number by 100, you move the decimal point ________ places to the right.

3. Fill in the table.

<table>
<thead>
<tr>
<th>Number</th>
<th>× 10</th>
<th>× 20</th>
<th>× 30</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Write a rule for multiplying by a multiple of 10.

5. Compare your rule with a friend’s rule. How did you revise your rules to make them clearer?

Friend’s name ____________________________

On today’s activity: (Circle one) I did great! I did OK. I need some help.
Today's Challenge: Fill in this table by adding the fraction at the top of the column to the fraction at the left of the row. Write your sum in simplest form.

<table>
<thead>
<tr>
<th>+</th>
<th>1/2</th>
<th>1/5</th>
<th>3/10</th>
<th>4/5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1/5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td>3/5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td>7/10</td>
<td></td>
</tr>
</tbody>
</table>

Go Further

4. Write the sums in the table in order from least to greatest.

On today's activity: (Circle one) I did great! I did OK. I need some help.

Name

Date
Go Further Follow the directions to cross out the numbers.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>18</td>
<td>27</td>
<td>35</td>
</tr>
<tr>
<td>24</td>
<td>36</td>
<td>50</td>
<td>9</td>
</tr>
<tr>
<td>90</td>
<td>72</td>
<td>65</td>
<td>54</td>
</tr>
<tr>
<td>63</td>
<td>48</td>
<td>108</td>
<td>99</td>
</tr>
</tbody>
</table>

- Cross out all numbers that are multiples of 5.
- Cross out all numbers that are less than or equal to 9×2.
- Cross out all numbers that are less than the number of minutes in $\frac{3}{4}$ hour.
- Cross out all multiples of 9.

1. Which number is not crossed out? __________

2. Circle all of the following numbers that are multiples of 9.

 126 145 162

3. How do you know? __

On today's activity: (Circle one) I did great! I did OK. I need some help.
Today’s Challenge: Find as many fractions as possible that are equivalent to \(\frac{1}{2} \) or to \(\frac{1}{3} \). Record the fractions you find.

Fractions equivalent to \(\frac{1}{2} \):

-
-
-

Fractions equivalent to \(\frac{1}{3} \):

-
-
-

Go Further: Fill in the numerators to make equivalent fractions.

\[
\begin{align*}
\frac{1}{2} &= \frac{\square}{4} & \frac{1}{3} &= \frac{\square}{9} \\
\frac{1}{2} &= \frac{\square}{16} & \frac{1}{3} &= \frac{\square}{18} \\
\frac{1}{2} &= \frac{\square}{100} & \frac{1}{3} &= \frac{\square}{75}
\end{align*}
\]

How did you solve these problems? Give an example and explain your thinking.

On today’s activity: (Circle one) I did great! I did OK. I need some help.

Name
Date
Get Started Rule out two. Write why. Fill in the correct circle.

What are the partial products of 72×5?

A $10 + 35$
B $10 + 350$
C $100 + 35$
D $100 + 350$

Today's Challenge

1. What are the partial products of 69×4?

A $32 + 260$
B $36 + 260$
C $32 + 240$
D $36 + 240$

2. What are the partial products of 732×8?

A $16 + 240 + 5600$
B $16 + 260 + 5400$
C $19 + 240 + 5600$
D $16 + 260 + 5600$

Total points for Today's Challenge:

On today’s activity: (Circle one) I did great! I did OK. I need some help.
Today's Challenge The diagram shows how Lisa’s teacher hangs up students’ papers in the classroom. Record the number of papers and the number of clips in the table. The first few are done for you.

<table>
<thead>
<tr>
<th>Number of Pages (p)</th>
<th>Number of Clips (c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>1. 5</td>
<td></td>
</tr>
<tr>
<td>2. 6</td>
<td></td>
</tr>
<tr>
<td>3. 7</td>
<td></td>
</tr>
<tr>
<td>4. 8</td>
<td></td>
</tr>
</tbody>
</table>

Go Further

5. The number of clips that Lisa’s teacher needs to hang 10 papers is ________
 because ____________________________

6. The number of clips that Lisa’s teacher needs to hang 15 papers is ________
 because ____________________________

7. If Lisa’s teacher wanted to hang up 23 papers, she would need ________ clips.
 I know this because ____________________________

8. Write an equation that describes the number of clips needed for any number of papers.

On today’s activity: (Circle one) I did great! I did OK. I need some help.

Name ____________________________ Date ____________________________
Today’s Challenge Find these mystery numbers.

1. What is 10,000 more than 124,012?
2. What is 100 less than 134,099?
3. What is \((7 \times 10^3) + (4 \times 10^2) + 9\)?
4. What is 10,000 less than 100,000?
5. What is 412,902 + (9 \times 10^3)?
6. What is 100 greater than 134,099?
7. What is 900 less than 134,099?
8. What is 100 greater than 914?
9. What is 10 less than 9,645,302?
10. What is \(10^2\) more than 7904?

Go Further

11. Write the answers to exercises 1–10 in order from least to greatest.

12. Write three of your own Mystery Number exercises. All three should have the same answer. Share your problems with a friend, then check that your answers agree.

Friend’s name ____________________________

On today’s activity: (Circle one) I did great! I did OK. I need some help.

52
Name
Date
Go Further Solve the riddles.

1. **Clue:**
 - I am an estimate for 21×66.
 - I was found by using a rounding strategy for both factors.
 - I am a number greater than 1000 and less than 1500.

 What number am I? ____________

2. **Clue:**
 - I am an estimate for 62×81.
 - I was found by using a rounding strategy for only one factor.
 - I am a number greater than 4800 and less than 5000.

 What number am I? ____________

3. Fill in the blanks to make and solve your riddle.

 Clue:
 - I am an estimate for _______ \times _______.
 - I was found by using ______________ strategy.
 - I am a number greater than _______ and less than _______.

 What number am I? ____________

4. Now write your own riddle for a friend to solve.

 Clue: __

 What number am I? ____________

 Friend’s name __

On today’s activity: (Circle one) I did great! I did OK. I need some help.

Name __________________________ Date ________
Today's Challenge Find strings of digits that can be used to make addition equations for decimals with sums that are equal to or less than 1. You must supply the zeroes in the ones places and the sum for each equation.

Write each complete equation.

<table>
<thead>
<tr>
<th>4</th>
<th>6</th>
<th>2</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>6</td>
<td>3</td>
</tr>
</tbody>
</table>

Go Further Create your own Math Jumble. Include at least five addition equations for decimals that have a sum equal to or less than 1. Have a friend find five addition equations for decimals with sums that are equal to or less than 1. Your friend must supply the zeroes in the ones places and the sum for each equation. Have your friend write each complete equation below.

Friend’s name ____________________________

On today’s activity: (Circle one) I did great! I did OK. I need some help.
Get Started Rule out two. Write why. Fill in the correct circle.

One winter morning, the temperature in Dallas was 41°F. The temperature in Detroit on the same morning was 13°F. What was the difference between the temperatures in Dallas and Detroit?

A 54°
B 38°
C 32°
D 28°

Today's Challenge

1. When Xavier left for school the temperature was 59°F. After school the temperature was 83°F. Which of the following describes the change in temperature during the day?

A an increase of 36°
B an increase of 24°
C a decrease of 36°
D a decrease of 24°

2. The temperature outside Ms. Mackey's classroom was 65°F this morning. Through the course of the day, it fell 4°, rose 17°, and then fell 2°. What was the temperature at the end of the school day?

A 88°F
B 80°F
C 76°F
D 42°F

Total points for Today's Challenge: ____________________________

On today's activity: (Circle one) I did great! I did OK. I need some help.

Name ____________________________ Date 55
Today's Challenge The diagram shows how Tony's group is planning to construct pentagons with straws. Record the number of pentagons and number of straws in the table. The first few are done for you.

<table>
<thead>
<tr>
<th>Number of Pentagons (p)</th>
<th>Number of Straws (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
</tr>
<tr>
<td>5</td>
<td>33</td>
</tr>
<tr>
<td>6</td>
<td>55</td>
</tr>
</tbody>
</table>

Go Further
7. Compare the two columns of numbers above. Write a sentence about the number of new straws for each new pentagon.

8. The number of straws that Tony's group needs to make 10 pentagons is _____
 because ____________________________.

9. The number of straws that Tony's group needs to make 15 pentagons is _____
 because ____________________________.

10. Write an equation that describes the number of straws needed for any number of pentagons. ____________________________

11. Compare your rule with a friend's rule. Revise your rule so that it is more useful.

 Friend's name ____________________________

On today's activity: (Circle one) I did great! I did OK. I need some help.
Today's Challenge

1. If \(x - 3 = 7 \), what is \(x \)?
2. If \(x = 9 \), what is \(4x \)?
3. If \(9x = 81 \), what is \(x \)?
4. If \(12 + x = 75 \), what is \(x \)?
5. If \(120 \div 5 = x \), what is \(x \)?
6. If \((10 + x)\) is 9 less than 22, what is \(x \)?
7. If \(x^2 = 81 \), what is \(x \)?
8. If \(12x = 144 \), what is \(x \)?
9. If \(54 \div 2 = x \), what is \(x \)?
10. If \(10x + 35 = 145 \), what is \(x \)?

Go Further

Write the questions for these answers.

Example
If the answer is \(x = 5 \), you could write
If \(5x = 25 \), what is \(x \)? or
If \(25 \div x = 5 \), what is \(x \)? or
If \(x + 3 = 8 \), what is \(x \)? or
If \(12 - x = 7 \), what is \(x \) or ...

11. Answer: \(x = 7 \) Question: __________________________
12. Answer: \(x = 10 \) Question: __________________________
13. Answer: \(x = 18 \) Question: __________________________
14. Answer: \(x = 25 \) Question: __________________________
15. Answer: \(x = 100 \) Question: __________________________

On today's activity: (Circle one) I did great! I did OK. I need some help.

Name __________________________ Date __________________________
Today's Challenge

Complete the table.

<table>
<thead>
<tr>
<th>Word Form</th>
<th>Fraction Form</th>
<th>Fraction Form</th>
<th>Decimal Form</th>
<th>Percent Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>two fifths</td>
<td>10</td>
<td>100</td>
<td></td>
<td>40%</td>
</tr>
<tr>
<td>one fifth</td>
<td>5</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>four fifths</td>
<td>10</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>three fifths</td>
<td>5</td>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

On today's activity: (Circle one)
- I did great!
- I did OK.
- I need some help.
Today’s Challenge Look for strings of digits that can be used to write multiplication equations with products equal to or less than 100. Each equation must include a one-digit and a two-digit factor or three single-digit factors. The product will not appear in the string of digits.

Write the equations.

Go Further Create your own Math Jumble. Include at least three strings of digits with a product equal to or less than 100. Each equation must include a one-digit and a two-digit factor or three single-digit factors. The product will not appear in the string of digits. Have a friend use the digits in your Math Jumble to write three multiplication equations with a product equal to or less than 100. Have your friend write the equations.

Friend’s name

On today’s activity: (Circle one) I did great! I did OK. I need some help.

Name Date
Get Started Rule out two. Write why. Fill in the correct circle.

Which of these prisms has 6 faces?

A

B

C

D

Today’s Challenge

1. Which of these prisms has 15 edges and 10 corners?

A

B

C

D

2. What are the attributes of a triangular prism?

A 3 faces, 6 corners, 9 edges

B 3 faces, 9 corners, 6 edges

C 5 faces, 6 corners, 6 edges

D 5 faces, 6 corners, 9 edges

Total points for Today’s Challenge:

On today’s activity: (Circle one) I did great! I did OK. I need some help.
Today’s Challenge

1. Think about mixing the juice in this can. Read the directions. Record the amounts of water in the table.

<table>
<thead>
<tr>
<th>Cans of Juice Concentrate (f)</th>
<th>Cans of Added Water (w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

2. What is this ratio of concentrate to water? ______________

3. What is the ratio of water to concentrate? ______________

Go Further

4. How are the numbers in the first column changing? ______________

5. What pattern do you notice in the second column? ______________

6. Think about the relationship between the concentrate and the amount of water. The amount of water is ______________.

7. Suppose your friend was having trouble knowing how much water to add to her juice concentrate for her party. You tell her you remember that the last time you used that brand, the ratio of concentrate to water was 1 to 4. Write a sentence to help her understand what you mean.

8. Write an equation that describes the number of cans of water needed for any number of cans of juice concentrate. ______________

9. Compare your equation with a friend’s equation.

 Discuss the differences, then revise if needed. ______________

 Friend’s name __________________________

On today’s activity: (Circle one) I did great! I did OK. I need some help.

Name __________________________ Date ______________
Today's Challenge: Use the division problems in the box to answer the questions. You will not use all the division problems.

1. Which is the division problem with a quotient between seven and eight? ____________
2. Which is the division problem with a quotient between four and five? ____________
3. Which is the division problem with a quotient between two and three? ____________
4. Which is the division problem with a quotient between six and seven? ____________
5. Which is the division problem with a quotient between five and six? ____________
6. Which is the division problem with a quotient between eight and nine? ____________
7. Which is the division problem with a quotient of five? ____________
8. Which is the division problem with a quotient of six? ____________

25 ÷ 5
26 ÷ 3
17 ÷ 8
37 ÷ 9
31 ÷ 5
45 ÷ 5
61 ÷ 8
28 ÷ 5
48 ÷ 8

Go Further: Here are three problems that use the expression 22 ÷ 4. They have three different answers. Find and explain the answers.

9. There are twenty-two children in the class and they are riding in family cars for a field trip. Four children fit in each car. How many cars are needed to take the children on the field trip?

10. Inez made $22.00 for four hours of work. How much did she earn each hour?

11. Notebooks cost $4.00 each. How many notebooks could David buy with $22.00?

On today's activity: (Circle one) I did great! I did OK. I need some help.
Get Started Fill in the blanks.
1. \[\text{Perimeter} = \text{_____ centimeters} \]
2. \[\text{Perimeter} = 64 \text{ feet} \]

Go Further
3. Solve this riddle.
 Bugs:
 - I am a regular octagon.
 - My perimeter in inches is equal to the value of two quarters, one nickel, and one penny.
 - I have sides whose lengths are a multiple of 7.

 What is the length of each of my sides? \[\text{______ inches} \]

4. Fill in the blanks to make a Perimeter Riddle.
 Bugs:
 - I am a \[\text{__________} \].
 - I have a perimeter equal to \[\text{__________} \].
 - I have sides whose lengths are multiples of \[\text{__________} \].

 What is the length of each of my sides? \[\text{_______} \]

5. Now write your own riddle for a friend to solve.
 Bugs:

 What is the length of each of my sides? \[\text{______________} \]

 Friend’s name \[\text{______________________________} \]

On today’s activity: (Circle one) I did great! I did OK. I need some help.
Today’s Challenge
Find strings of digits that could be used to make division equations with remainders equal to or less than 4 and greater than 0. Equations must be two-digit numbers divided by one-digit numbers. The quotient and remainder will not appear in the string of digits.

4 6 6 8
3 5 4 6
5 7 9 8
6 1 6 3

Write the equations.

Go Further
Create your own Math Jumble. Include at least five two-digit divided by one-digit division equations with remainders equal to or less than 4 and greater than 0. The quotient and remainder will not appear in the string of digits. Have a friend use the digits in your Math Jumble to find the division equations you have created. Have your friend write the equations.

Friend’s name _______________________

On today’s activity: (Circle one) I did great! I did OK. I need some help.
Get Started
Rule Out Two. Write why. Fill in the correct circle.

Study the fraction strip to the right. Which list of fractions is equivalent to the shaded portion of the fraction strip?

Today's Challenge

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2 = 1/2 = 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>1 = 2/4 = 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>2 = 4/4 = 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>2 = 4/3 = 5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Study the fraction strip to the right. Which list of fractions is equivalent to the shaded portion of the fraction strip?

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2 = 4/10 = 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>2 = 4/8 = 11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>2 = 4/8 = 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>2 = 4/10 = 15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Study the fraction strip to the right. Which list of fractions is equivalent to the shaded portion of the fraction strip?

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4/12 = 2/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>8/12 = 6/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>8/12 = 4/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>4/12 = 3/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total points for Today's Challenge: ____________

On today's activity: (Circle one) "I did OK" "I need some help"

Date: ____________

Name: ____________
Today's Challenge

1. Fill in all the different ways to make 25¢.

<table>
<thead>
<tr>
<th>Sum</th>
<th>Dimes (d)</th>
<th>Nickels (n)</th>
<th>Pennies (p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25¢</td>
<td>0</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>25¢</td>
<td>0</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>25¢</td>
<td>0</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>25¢</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>25¢</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>25¢</td>
<td>0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>25¢</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>25¢</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>25¢</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>25¢</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>25¢</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. What happens to the number of pennies when the dimes increase by one?

3. How can you tell that you have all the coin combinations for 25¢?

Go Further

4. Make an organized list to find all the coin combinations for 36¢ with only dimes, nickels, and pennies. Use another piece of paper.

5. Why is there never a zero in the pennies column?

6. Compare your table to a friend’s table. Did you miss any combinations? If yes, how could you organize your list so you would not miss any?

Friend’s name

On today’s activity: (Circle one) I did great! I did OK. I need some help.
Today’s Challenge Choose your answers from this box. You won’t use every number.

1. What is the only even prime number? ________
2. What is a composite number whose factors, other than 1 and itself, are 5 and 11? ________
3. What is the largest two-digit prime number? ________
4. What is the only counting number that is neither prime nor composite? ________
5. What is the largest one-digit prime number? ________
6. What is the only odd number between 10 and 20 that is not prime? ________
7. What is the least number divisible by both six and nine? ________
8. What is the prime number that comes between 11 and 17? ________
9. What is a prime number between 20 and 30? Its digits have a sum of five. ________
10. What is a multiple of five whose digits have a sum of 11? ________

Go Further
11. Cross off numbers that are not prime. Circle every prime number.

12. How many prime numbers between 1 and 100 have
 a 0 in the ones place? ________
 a 1 in the ones place? ________
 a 2 in the ones place? ________
 a 3 in the ones place? ________
 a 4 in the ones place? ________
 a 5 in the ones place? ________
 a 6 in the ones place? ________ a 7 in the ones place? ________
 an 8 in the ones place? ________ a 9 in the ones place? ________

On today’s activity: (Circle one) I did great! I did OK. I need some help.

Name __________________________ Date ________
Go Further Solve the riddles.

1. **C/UES**:
 - I am an estimate for 6321×66.
 - I was found by using a rounding strategy: one factor rounded to the nearest ten and the other factor to the nearest thousand.
 - I am a number greater than 360,000 and less than 430,000.
 What number am I? ______________

2. **C/UES**:
 - I am an estimate for 5662×81.
 - I was found by using a rounding strategy: the two-digit factor rounded to the nearest hundred.
 - I am a number greater than 560,000 and less than 566,700.
 What number am I? ______________

3. Fill in the blanks to make and solve your riddle.
 C/UES:
 - I am an estimate for ________ \times ________.
 - I was found by using a rounding strategy: ______________
 - I am a number greater than ______________
 and less than ______________.
 What number am I? ______________

4. Now write your own riddle for a friend to solve.
 C/UES:

 __
 __
 __
 __

 What number am I? ______________

 Friend’s name ____________________________

On today’s activity: (Circle one) I did great! I did OK. I need some help.
Today’s Challenge: Find strings of digits that could be used to make division equations with remainders of 0 or 1. Equations must be two-digit numbers divided by one-digit numbers. The quotient and remainder will not appear in the string of digits. Write the equations below.

<table>
<thead>
<tr>
<th>1 6 5 1</th>
<th>Equations with remainders of 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 4 6 2</td>
<td></td>
</tr>
<tr>
<td>4 9 8 4</td>
<td></td>
</tr>
<tr>
<td>1 4 2 6</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Equations with remainders of 1</th>
</tr>
</thead>
</table>

Go Further: Create your own Math Jumble. Include at least five two-digit divided by one-digit division equations with remainders of 0 or 1. The quotient and remainder will not appear in the string of digits. Have a friend use the digits in your Math Jumble to find the division equations you have created. Have your friend write the equations.

Friend’s name

On today’s activity: (Circle one) I did great! I did OK. I need some help.

Name

Date
Get Started
Rule out two. Write why. Fill in the correct circle.

Which of these statements is true?

A 25, 27, and 29 are composite numbers.
B 32, 37, and 39 are composite numbers.
C 13, 17, and 19 are prime numbers.
D 41, 42, and 43 are prime numbers.

Today's Challenge

1. Which of these statements is not true?
 A 2, 13, and 31 are prime.
 B 45, 48, and 49 are composite.
 C 21, 31 and 41 are prime.
 D 18, 28, and 38 are composite.

2. Which of these statements is true?
 A Prime numbers are always odd.
 B Composite numbers have at least 3 factors.
 C All even numbers are composite.
 D The number 1 is composite.

Total points for Today's Challenge:

On today's activity: (Circle one) I did great! I did OK. I need some help.
Today's Challenge

1. Complete the table to show all combinations for $1.00 using quarters, dimes, and nickels.

<table>
<thead>
<tr>
<th>Sum</th>
<th>Quarters (q)</th>
<th>Dimes (d)</th>
<th>Nickels (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1.00</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$1.00</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>$1.00</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>$1.00</td>
<td>3</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>$1.00</td>
<td>2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>$1.00</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>$1.00</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$1.00</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$1.00</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$1.00</td>
<td>1</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>$1.00</td>
<td>1</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>$1.00</td>
<td>1</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>$1.00</td>
<td>1</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>$1.00</td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>$1.00</td>
<td>0</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>$1.00</td>
<td>0</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>$1.00</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. How do you know that you have all possible combinations with no duplicates?

3. How many rows would be added if you had some half-dollars?

Go Further

4. Make an organized list to show how you and five friends could pair up to play a two-person card game. You may need to use another piece of paper.

On today's activity: (Circle one) I did great! I did OK. I need some help.

Name

Date
Today's Challenge: Fill in the table by rounding the given number.

<table>
<thead>
<tr>
<th>Round to the Nearest Ten</th>
<th>Number</th>
<th>Round to the Nearest Hundred</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>462</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>1013</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>892</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>612</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>445</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>9496</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>15,012</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>4312</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>345</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>17,432</td>
<td></td>
</tr>
</tbody>
</table>

Go Further

11. Think of at least three numbers that round the same way whether you round to the nearest ten or the nearest hundred. Exercise 6 is one example. What is special about the ones and tens digits in these numbers?

On today's activity: (Circle one) I did great! I did OK. I need some help.
Get Started

<table>
<thead>
<tr>
<th>1 Gallon</th>
<th>1 Quart</th>
<th>1 Pint</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 cups</td>
<td>4 cups</td>
<td>2 cups</td>
</tr>
<tr>
<td>8 pints</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 quarts</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Today's Challenge

Complete the table.

<table>
<thead>
<tr>
<th>Gallons</th>
<th>Quarts</th>
<th>Pints</th>
<th>Cups</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 gallon</td>
<td>4 quarts</td>
<td>8 pints</td>
<td>16 cups</td>
</tr>
</tbody>
</table>

1. \(\frac{1}{2} \) gallon

2. __________ 1 quart 2 pints __________

3. __________ 6 pints 12 cups __________

4. \(2 \frac{1}{2} \) gallons

On today's activity: (Circle one) I did great! I did OK. I need some help.

Name __________________________ Date __________

© Great Source. Permission is granted to copy this page.
Today's Challenge
Find strings of digits that could be used to make division equations with quotients of 10, 11, or 12. Equations must be two-digit numbers divided by one-digit numbers. The quotient will not appear in the string of digits.

Write the equations.

Go Further
Create your own Math Jumble. Include at least four strings of digits that could be used to make division equations with quotients of 10, 11, or 12. Equations must be two-digit numbers divided by one-digit numbers. The quotient will not appear in the string of digits. Have a friend use the digits in your Math Jumble to find the division equations you have created. Have your friend write the equations.

On today's activity: (Circle one) I did great! I did OK. I need some help.
Get Started Rule out two. Write why. Fill in the correct circle.

When dividing 489 by 5, how many groups of 5 would you estimate could be made?

A more than 100
B exactly 100
C less than 100
D less than 50

Today’s Challenge

1. When dividing 742 by 6, how many groups of 6 would you estimate could be made?

A more than 100
B exactly 100
C less than 100
D less than 50

2. What is the quotient of 328 ÷ 6?

A 54 R4
B 54
C 50 R28
D 90 R4

Total points for Today’s Challenge: __________________

On today’s activity: (Circle one) I did great! I did OK. I need some help.

Name

Date
Today's Challenge

1. The diagram shows seven connected squares. Add to the diagram, following the same pattern, until you have 12 squares.

2. Fill in the table.

Go Further

3. Write a sentence about the relationship between the numbers in the columns in the completed table.

<table>
<thead>
<tr>
<th>Number of Squares (n)</th>
<th>Number of Straws (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
</tr>
<tr>
<td>6</td>
<td>19</td>
</tr>
<tr>
<td>7</td>
<td>22</td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

4. Write an equation for the number of straws needed to make any number of squares.

5. Compare your equation with a friend's equation. How and why would you like to change your answer to exercise 4?

Friend's name __________________

6. Write an equation to describe the relationship between the sides and the number of triangles in this pattern.

On today's activity: (Circle one) I did great! I did OK. I need some help.
Today's Challenge

Answer these ten questions about the number 87.623.

1. Round it to the nearest ten. _________
2. What is the digit in the hundredths place? _________
3. What is the place value of the two? _________
4. Round it to the nearest tenth. _________
5. What is the place value of the eight? _________
6. What digit is in the ones place? _________
7. Round it to the nearest hundred. _________
8. What digit is in the thousandths place? _________
9. Round it to the nearest hundredth. _________
10. Round it to the nearest whole number. _________

Go Further

Start with 87.623. Use the answer for each exercise as the starting number for the next exercise. The sum in exercise 16 should be 200.000

11. Add 0.5
12. Subtract 0.52
13. Add 112
14. Subtract 0.039
15. Add 5
16. Subtract 4.564

Check sum: 200.000

On today’s activity: (Circle one) I did great! I did OK. I need some help.

Name

Date
Go Further Solve the riddles.

1. **Clues:**
 - I am an estimate for 5386 – 298.
 - I was found by using a rounding up strategy.
 - I am a number greater than 5010 and less than 5095.

What number am I? _________

2. **Clues:**
 - I am an estimate for 3942 – 695.
 - I was found by rounding both numbers to the thousands place.
 - I am a number greater than 2000 and less than 4000.

What number am I? _________

3. Fill in the blanks to make and solve your riddle.

Clues:
 - I am an estimate for _______ – ________.
 - I was found by __________________ strategy.
 - I am a number greater than _______ and less than ________.

What number am I? _________

4. Now write your own riddle for a friend to solve.

Clues:

What number am I? _________

Friend’s name ________________________

On today’s activity: (Circle one) I did great! I did OK. I need some help.
Today's Challenge Find strings of digits that could be used to make division equations with quotients greater than 20 and less than 30. Equations must be two-digit numbers divided by one-digit numbers. The quotient will not appear in the string of digits.

![Digits](image)

Write the equations.

Go Further Create your own Math Jumble. Include at least four strings of digits that could be used to make division equations with quotients greater than 20 and less than 30. Equations must be two-digit numbers divided by one-digit numbers. The quotient will not appear in the string of digits. Have a friend use the digits in your Math Jumble to find the division equations you have created. Have your friend write the equations.

Friend's name ______________________

On today's activity: (Circle one) I did great! I did OK. I need some help.
Get Started Rule out two. Write why. Fill in the correct circle.

Monday morning, the temperature in Pasadena was 42°F. By noon, the temperature was 70°F. At 5:00 p.m. the temperature was 81°F. Which of the following describes the movement of the temperature on Monday?

A an increase of 28°
B an increase of 32°
C an increase of 39°
D an increase of 41°

Today's Challenge

1. The sixth-grade students sold cups of lemonade on Field Day. In the first hour, they sold 5 gallons. How many cups of lemonade were sold in the first hour?

A 40 cups
B 80 cups
C 120 cups
D 300 cups

2. The PTA bought 21 yards of material to make new robes for the after-school choir. How many feet of material is 21 yards?

A 7 feet
B 33 feet
C 63 feet
D 84 feet

Total points for Today's Challenge:

On today's activity: (Circle one) I did great! I did OK. I need some help.

Name
Date
Today’s Challenge

1. Fill in the missing numbers in the table.

<table>
<thead>
<tr>
<th>Inches</th>
<th>Fraction of a Foot</th>
<th>Simplest Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\frac{1}{12}$</td>
<td>$\frac{1}{12}$</td>
</tr>
<tr>
<td>6</td>
<td>$\frac{6}{12}$</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>$1\frac{1}{3}$</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>$1\frac{1}{2}$</td>
</tr>
</tbody>
</table>

Go Further

2. How many inches are on a ruler two feet long? ________

3. How many inches are on a yardstick? ________

4. Fill in the table.

<table>
<thead>
<tr>
<th>Inches</th>
<th>Fraction of a Yard</th>
<th>Simplest Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>$\frac{35}{36}$</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>$\frac{30}{36}$</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>$\frac{24}{36}$</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>$\frac{18}{36}$</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>$\frac{14}{36}$</td>
<td>$\frac{7}{18}$</td>
</tr>
</tbody>
</table>

5. Why is the number of inches in $\frac{1}{2}$ yard not the same as the number of inches in $\frac{1}{2}$ foot?

6. When does $\frac{1}{2}$ not equal $\frac{1}{2}$?

On today’s activity: (Circle one) I did great! I did OK. I need some help.

Name ___________________________ Date __________
Today's Challenge
Find the remainder. Letter these exercises in order, A–J, from the least remainder to the greatest remainder.

<table>
<thead>
<tr>
<th></th>
<th>Remainder</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>What is the remainder when 82 is divided by 9?</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>What is the remainder when 39 is divided by 5?</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>What is the remainder when 55 is divided by 7?</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>What is the remainder when 62 is divided by 9?</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>What is the remainder when 58 is divided by 7?</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>What is the remainder when 99 is divided by 10?</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>What is the remainder when 23 is divided by 12?</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>What is the remainder when 55 is divided by 8?</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>What is the remainder when 18 is divided by 5?</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>What is the remainder when 56 is divided by 7?</td>
<td></td>
</tr>
</tbody>
</table>

Go Further

11. Invent a problem that has a remainder of 7.

12. Can you invent a problem with a divisor of 10 and a remainder of 7? Why or why not?

13. Can you invent a problem with a divisor of 5 and a remainder of 7? Why or why not?

On today's activity: (Circle one)
I did great!
I did OK.
I need some help.
Today’s Challenge

Example 1

| Perimeter: 20 meters | 3 m | 7 m |

Example 2

| Perimeter: 20 meters | 4 m | 6 m |

Complete the table.

<table>
<thead>
<tr>
<th></th>
<th>Perimeter: 20 feet</th>
<th>8 ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Perimeter: 24 centimeters</th>
<th>5 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Perimeter: 24 yards</th>
<th>4 yd</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Perimeter: 28 inches</th>
<th>9 in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Perimeter: 28 kilometers</th>
<th>4 km</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Perimeter: 30 feet</th>
<th>5 ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Perimeter: 30 millimeters</th>
<th>6 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Perimeter: 32 miles</th>
<th>10 mi</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Perimeter: 20 feet</th>
<th>1 ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Perimeter: 24 centimeters</th>
<th>3 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Perimeter: 24 yards</th>
<th>2 yd</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Perimeter: 28 inches</th>
<th>8 in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Perimeter: 28 kilometers</th>
<th>2 km</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Perimeter: 30 feet</th>
<th>7 ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Perimeter: 30 millimeters</th>
<th>4 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Perimeter: 32 miles</th>
<th>7 mi</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

On today’s activity: (Circle one) I did great! I did OK. I need some help.

Name

Date
Today’s Challenge: Find strings of coins that total 50 cents.

Record the coin combinations.

Go Further:
What is the total amount of money shown in the Math Jumble above? Write about how you found your answer.

On today’s activity: (Circle one) I did great! I did OK. I need some help.
Get Started Rule out two. Write why. Fill in the correct circle.

Mr. Arlington assembled a baby’s crib for his new grandson. Which term best describes the bars on a baby’s crib?

A intersecting
B parallel
C perpendicular
D regular

Today’s Challenge

1. The location of the gold and jewels is always marked with an X on a treasure map. Which term best describes the lines that form the letter X?

A intersecting
B parallel
C perpendicular
D striped

2. Study the street map to the right. Which term best describes the relationship of Maxwell Street to Hulcy Avenue?

A intersecting
B parallel
C perpendicular
D crossing

Total points for Today’s Challenge:

On today’s activity: (Circle one) I did great! I did OK. I need some help.

Name Date
Today’s Challenge

1. Finish filling in the table.

<table>
<thead>
<tr>
<th>Cups of Lemonade Wanted (l)</th>
<th>Cups of Water (w)</th>
<th>Tablespoons of Sugar (s)</th>
<th>Cups of Lemon Juice (j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Write a sentence that describes the relationship between the cups of lemonade wanted and the cups of water needed.

3. Write a sentence that describes the relationship between the cups of lemonade and the tablespoons of sugar.

4. Five cups of lemonade needs 1 cup of lemon juice; 10 cups of lemonade needs 2 cups of lemon juice, l cups of lemonade needs ______ cups of lemon juice.

Go Further

5. Write a ratio to describe the relationship between cups of lemon juice and tablespoons of sugar.

6. If you have already mixed six cups of water with $1 \frac{1}{2}$ cups of lemon juice, how much sugar should you add? ________________

 How many cups of lemonade will you then have? ________________

7. Compare your answer to exercise 6 with a friend’s answer. Adjust your answers if you need to and explain why you did.

 __

 Friend’s name ________________________________

On today’s activity: (Circle one) I did great! I did OK. I need some help.
Today’s Challenge: Fill in the missing fraction or decimal and the missing measurement. The first is done for you.

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Fraction</th>
<th>Measurement equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 0.375</td>
<td>$\frac{3}{8}$</td>
<td>6 ounces are this part of one pound.</td>
</tr>
<tr>
<td>2. 0.2</td>
<td>$\frac{1}{5}$</td>
<td>______ minutes are in this part of an hour.</td>
</tr>
<tr>
<td>3. 0.5</td>
<td></td>
<td>______ eggs are in this part of a dozen.</td>
</tr>
<tr>
<td>4. 0.25</td>
<td></td>
<td>______ cups are in this part of a quart.</td>
</tr>
<tr>
<td>5. 0.75</td>
<td>$\frac{1}{2}$</td>
<td>______ inches are in this part of a yard.</td>
</tr>
<tr>
<td>6. 0.25</td>
<td>$\frac{1}{4}$</td>
<td>______ inches are in this part of a foot.</td>
</tr>
<tr>
<td>7. 0.75</td>
<td></td>
<td>______ months are in this part of a year.</td>
</tr>
<tr>
<td>8.</td>
<td>$\frac{3}{4}$</td>
<td>______ minutes are in this part of an hour.</td>
</tr>
<tr>
<td>9.</td>
<td>$\frac{1}{8}$</td>
<td>______ ounces are in this part of a pound.</td>
</tr>
<tr>
<td>10. 0.4</td>
<td></td>
<td>______ years are in this part of a decade.</td>
</tr>
<tr>
<td>11.</td>
<td>$\frac{1}{10}$</td>
<td>______ pennies are in this part of a dime.</td>
</tr>
</tbody>
</table>

Go Further: Fill in the table.

12. Is this fraction of a foot equivalent to a whole number of inches? (For example, $\frac{1}{7}$ of a foot is not a whole number of inches but $\frac{1}{6}$ of a foot is.) Write yes or no.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
</table>

On today’s activity: (Circle one) I did great! I did OK. I need some help.

Name ___________________________ Date ___________________________
Today's Challenge Find an object that answers each riddle.

1. I am more than $\frac{1}{10}$ of a meter long but less than $\frac{2}{10}$ of a meter long.
 What am I? __________________________

2. I am more than 0.6 of a decimeter long but less than 0.9 of a decimeter long.
 What am I? __________________________

Go Further Fill in the blanks with fractions or decimals to make a measurement riddle.

3. **Bugs:**
 - I am more than ________ of a meter long.
 - I am less than ________ of a decimeter long.
 What am I? __________________________

4. Write your own riddle for a friend to solve.
 Bugs: __________________________

 What am I? __________________________
 Friend's name __________________________

On today's activity: (Circle one) I did great! I did OK. I need some help.
Today’s Challenge Look for fractions with like denominators that if added equal 1.

Write the equations.

Go Further Create your own Math Jumble. Include at least five pairs of fractions that when added equal 1. Have a friend use the digits in your Math Jumble to find five fraction addition equations with like denominators that when added equal 1. Have your friend write the equations.

Friend’s name ________________

On today’s activity: (Circle one) I did great! I did OK. I need some help.

Name ___________________________ Date ________
Get Started Rule out two. Write why. Fill in the correct circle.

Which equation illustrates the commutative property, as shown in $75 \times 43 = 43 \times 75$?

A $75 - 43 = 43 - 75$
B $75 + 43 = 62 + 56$
C $59 \times 81 = 81 \times 59$
D $450 \div 90 = 450 \div 50$

Today's Challenge

1. Which equation illustrates the commutative property as shown in $49 \times 61 = 61 \times 49$?

A $100 \div 10 = 10 \times 10$
B $55 \times 64 = 64 \times 55$
C $72 + 47 = 74 + 27$
D $82 - 54 = 82 - 45$

2. Which number makes the equation $19 \times 94 = 94 \times \square$ true?

A 94
B 91
C 90
D 19

Total points for Today's Challenge: ________________________

On today's activity: (Circle one) I did great! I did OK. I need some help.

Name ________________________ Date ________________________
Today's Challenge

1. Fill in the table.

<table>
<thead>
<tr>
<th>Centimeters</th>
<th>Meters Fraction Form</th>
<th>Meters Decimal Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\frac{1}{100}$</td>
<td>0.01</td>
</tr>
<tr>
<td>5</td>
<td>$\frac{5}{100} = \frac{1}{20}$</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>$\frac{10}{100} = \frac{1}{10}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\frac{1}{4}$</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>$\frac{1}{2}$</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>$\frac{1}{1}$</td>
<td>1</td>
</tr>
<tr>
<td>150</td>
<td></td>
<td>1.5</td>
</tr>
</tbody>
</table>

Go Further

2. How many centimeters are in two meters? __________

3. One millimeter = 0.1 centimeter. How many millimeters are in one centimeter? __________

4. Fill in the table.

5. Why is the number of millimeters in $\frac{1}{2}$ centimeter not the same as the number of centimeters in $\frac{1}{2}$ meter? ________________

<table>
<thead>
<tr>
<th>Millimeters</th>
<th>Centimeters Fraction Form</th>
<th>Centimeters Decimal Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>$\frac{10}{10} = \frac{1}{1}$</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>$\frac{15}{10} = \frac{3}{2}$</td>
<td>1.5</td>
</tr>
<tr>
<td>20</td>
<td>$\frac{25}{10} = 2\frac{1}{2}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\frac{4}{5}$</td>
<td>0.8</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

On today's activity: (Circle one) I did great! I did OK. I need some help.

Name

Date
Today's Challenge

1. Draw the symbol for *is equal to.*

2. Draw two symbols for *multiplication.*

3. Draw the symbol for *addition.*

4. Draw the symbol for *percent.*

5. Draw the symbol for *subtraction.*

6. Draw a symbol for *division.*

7. Draw one set of *grouping symbols.*

8. Draw the symbol for *cents.*

9. Draw the symbol for *is not equal to.*

10. Draw the symbol for *is greater than or equal to.*

Go Further

11. Write a mathematical expression with a value of 25.

 Use as many different symbols as you can.

12. Write an inequality. Compare an expression using at least three symbols to the number 62.

On today's activity: (Circle one) I did great! I did OK. I need some help.
Go Further: Solve the riddles.

1. **E/R**: I am an estimate for $\frac{542}{61}$.
 - I was found by rounding both dividend and divisor to the tens place.
 - I am a number greater than 5 and less than 10.
 What number am I? ________

2. **E/R**: I am an estimate for $\frac{7531}{254}$.
 - I was found by thinking about quarters and dollars.
 - I am a number greater than 20 and less than 40.
 What number am I? ________

3. Fill in the blanks to make and solve your riddle.
 E/R: I am an estimate for _______ ÷ _______.
 - I was found by ____________________.
 - I am a number greater than _______ and less than _______.
 What number am I? ________

4. Now write your own riddle for a friend to solve.
 E/R: __________________________

 What number am I? ________
 Friend’s name __________________________

On today’s activity: (Circle one) I did great! I did OK. I need some help.
Today's Challenge Loop strings of coins to make each amount. Then list the coins you looped.

1. Loop a string of coins that totals 22¢. ___________________________
2. Loop a string of coins that totals 18¢. ___________________________
3. Loop a string of coins that totals 51¢. ___________________________
4. Loop a string of coins that totals 26¢. ___________________________
5. Loop a string of coins that totals 38¢. ___________________________

Go Further What is the total value of the coins shown in the Math Jumble above? Write about how you found your answer.

On today's activity: (Circle one) I did great! I did OK. I need some help.
Get Started Rule out two. Write why. Fill in the correct circle.

Which expression is the expanded form of 1,011,101?

A 1,000,000 + 1000 + 100 + 1
B 1,000,000 + 11,000 + 100 + 1
C 1,000,000 + 10,000 + 1000 + 100 + 1
D 1,000,000 + 100,000 + 1000 + 100 + 1

Today's Challenge

1. Which expression is the expanded form of 8,070,634?
 A 80,000,000 + 70,000 + 600 + 30 + 4
 B 8,000,000 + 70,000 + 600 + 30 + 4
 C 8,000,000 + 7000 + 600 + 30 + 4
 D 8,000,000 + 70,000 + 60 + 30 + 4

2. Which expression is the expanded form of 5,540,450?
 A 5,000,000 + 500,000 + 4000 + 400 + 5
 B 5,000,000 + 50,000 + 4000 + 400 + 50
 C 5,000,000 + 500,000 + 4000 + 400 + 50
 D 5,000,000 + 500,000 + 40,000 + 400 + 50

Total points for Today's Challenge:

On today's activity: (Circle one) I did great! I did OK. I need some help.

Name

Date
Today's Challenge

1. Complete the table. Write all fractions in simplest form.

2. Use common multiples. Predict the next three rows in the table that will contain only whole numbers.

<table>
<thead>
<tr>
<th>Cups</th>
<th>Pints</th>
<th>Quarts</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\frac{1}{2})</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>(\frac{1}{2})</td>
</tr>
<tr>
<td>3</td>
<td>(1\frac{1}{2})</td>
<td>(\frac{3}{4})</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Go Further

3. Billy drinks a cup of orange juice at breakfast, lunch, and dinner.

How many pints of orange juice does he drink in two days? __________

How many quarts? __________

4. Complete the table. Write all fractions in simplest form.

<table>
<thead>
<tr>
<th>Ounces</th>
<th>Tablespoons</th>
<th>Cups</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>(\frac{1}{8})</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>(\frac{1}{2})</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>(\frac{3}{4})</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Be careful here!

5. There are eight ounces in a cup. Glass A holds two cups and Glass B holds 14 ounces. Which glass holds more liquid?

On today's activity: (Circle one) I did great! I did OK. I need some help.
Today's Challenge
Fill in the rest of this chart by multiplying the number by 0.1, 10 and 100.

<table>
<thead>
<tr>
<th>Multiply by 0.1</th>
<th>Number</th>
<th>Multiply by 10</th>
<th>Multiply by 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>540</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>1.013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>60.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>1670</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>4.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>1.5012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>431.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>3.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>17,432</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Go Further
Given one factor and the product, find the second factor.

<table>
<thead>
<tr>
<th>First Factor</th>
<th>Second Factor</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>11. 1670</td>
<td></td>
<td>167</td>
</tr>
<tr>
<td>12. 43.04</td>
<td></td>
<td>4304</td>
</tr>
<tr>
<td>13. 0.915</td>
<td></td>
<td>91.5</td>
</tr>
<tr>
<td>14. 891.2</td>
<td></td>
<td>8912</td>
</tr>
<tr>
<td>15. 563</td>
<td></td>
<td>56.3</td>
</tr>
</tbody>
</table>

On today's activity: (Circle one)
I did great! I did OK. I need some help.

Name
Date
Go Further Fill in the calendar. Follow the directions to cross out dates.

MARCH

1

- Cross out all dates that are less than one week after March 5th.
- Cross out all dates that are after the last Thursday of the month.
- Cross out all dates that are more than one week after March 11th.
- Cross out all dates that are less than one week after March 11th.

1. Which date is not crossed out?

2. Create your own “Fantastic Finalist” activity for a friend to solve. Your friend should fill in the calendar before crossing out any dates.

JUNE

1

- Cross out all dates that are
Which date is not crossed out?
Friend’s name

On today’s activity: (Circle one) I did great! I did OK. I need some help.
Today's Challenge Look for pairs of one-digit factors for the given multiples. Fill in the table with each pair found.

<table>
<thead>
<tr>
<th>Multiple</th>
<th>Factor pairs</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
</tr>
</tbody>
</table>

Go Further

1. List all the factors of 24.

2. List all the factors of 36.

3. What are the common factors of 24 and 36?

4. What is the greatest common factor of 24 and 36?

On today's activity: (Circle one) I did great! I did OK. I need some help.

Name

Date
Get Started Rule out two. Write why. Fill in the correct circle.

Within which of the following ranges can the product of 75 × 62 be found?

A between 4500 and 5000
B between 4000 and 4500
C between 3500 and 4000
D between 100 and 200

Today’s Challenge

1. Within which of the following ranges can the product of 32 × 38 be found?

A between 100 and 200
B between 500 and 1000
C between 1000 and 1500
D between 2000 and 2500

2. Within which of the following ranges can the product of 135 × 26 be found?

A between 3000 and 4000
B between 2000 and 3000
C between 300 and 4000
D between 200 and 300

Total points for Today’s Challenge:

On today’s activity: (Circle one) I did great! I did OK. I need some help.
Today’s Challenge

1. Complete the table. Write all fractions in simplest form.

2. One pattern in the table is: When the number of cups increases by 2, the number of quarts increases by $\frac{1}{2}$. Describe a pattern that relates the number of cups to the number of gallons.

<table>
<thead>
<tr>
<th>Cups</th>
<th>Quarts</th>
<th>Gallons</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td>$\frac{1}{8}$</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>$\frac{1}{4}$</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>$\frac{3}{2}$</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>$2\frac{1}{2}$</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>$1\frac{1}{2}$</td>
</tr>
</tbody>
</table>

Go Further

3. If a car holds 20 gallons of gasoline, how many quarts of gasoline does the car hold? ________________

4. Complete the table. Write all fractions in simplest form.

5. Describe the pattern of the number of gallons in an odd number of cups.

<table>
<thead>
<tr>
<th>Cups</th>
<th>Gallons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>$\frac{1}{8}$</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>$\frac{1}{4}$</td>
</tr>
<tr>
<td>5</td>
<td>$\frac{5}{16}$</td>
</tr>
<tr>
<td>6</td>
<td>$\frac{3}{8}$</td>
</tr>
<tr>
<td>8</td>
<td>$\frac{1}{2}$</td>
</tr>
</tbody>
</table>

6. Does your pattern for exercise 5 describe even numbers of cups, too? __________

 Explain. __

On today’s activity: (Circle one) I did great! I did OK. I need some help.

Name

Date
Today's Challenge

1. Draw a five-sided polygon.
2. Draw an eight-sided polygon.
3. Draw a rectangle with four congruent sides.
4. Draw a polygon with six sides.
5. Draw parallel lines.
6. Draw a four-sided figure. It must have two sets of congruent sides but no parallel sides.
7. Draw the angle that measures exactly 90°.
8. Draw an angle that measures between 0° and 90°.
10. Draw lines that intersect.

Go Further

11. Name the figures you drew for exercises 1, 2, 3, 4, 6, and 9.

12. Compare the lines in exercise 5 with the lines in exercise 10.

13. How do the angles in the figure in exercise 9 compare to the angle in exercise 7?

On today's activity: (Circle one) I did great! I did OK. I need some help.
Today's Challenge

Example 1

| Area: 10 square centimeters | 2 cm | 5 cm |

Example 2

| Area: 10 square centimeters | 10 cm | 1 cm |

Complete the table.

<table>
<thead>
<tr>
<th></th>
<th>1. Area: 20 square feet</th>
<th>2 ft</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3. Area: 24 square centimeters</td>
<td>2 cm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Area: 24 square yards</td>
<td>3 yd</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7. Area: 28 square inches</td>
<td>4 in.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9. Area: 28 square kilometers</td>
<td>28 km</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11. Area: 30 square feet</td>
<td>5 ft</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13. Area: 30 square millimeters</td>
<td>2 mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15. Area: 32 square miles</td>
<td>8 miles</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Area: 20 square feet</td>
<td>4 ft</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Area: 24 square centimeters</td>
<td>6 cm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. Area: 24 square yards</td>
<td>1 yd</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8. Area: 28 square inches</td>
<td>2 in.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10. Area: 28 square kilometers</td>
<td>7 km</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12. Area: 30 square feet</td>
<td>10 ft</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14. Area: 30 square millimeters</td>
<td>1 mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16. Area: 32 square miles</td>
<td>16 miles</td>
<td></td>
</tr>
</tbody>
</table>

On today's activity: (Circle one) I did great! I did OK. I need some help.

Name

Date
Today's Challenge Find strings of digits that can be used to make subtraction equations for decimals with differences that are greater than 0.19 and less than 0.27. All the numbers in the equations must be less than 1. You must supply the zeroes in the ones places and the difference for each equation.

<table>
<thead>
<tr>
<th>9775</th>
<th>Write each complete equation.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4685</td>
<td></td>
</tr>
<tr>
<td>8653</td>
<td></td>
</tr>
<tr>
<td>4369</td>
<td></td>
</tr>
</tbody>
</table>

Go Further Create your own Math Jumble. Include at least five subtraction equations for decimals with differences that are greater than 0.19 and less than 0.27. All the numbers in the equations must be less than 1. Have a friend use your Math Jumble to find the five subtraction equations. Your friend must supply the zeroes in the ones places and the difference for each equation. Have your friend write each complete equation below.

Write each complete equation below.

Friend’s name

On today’s activity: (Circle one) I did great! I did OK. I need some help.
Get Started Rule out two. Write why. Fill in the correct circle.

Savon went to the roller skating rink at 12:30 P.M. His mother picked him up at 4:00 P.M. How long was Savon at the roller rink?

A 2 hours
B 2 hours 30 minutes
C 3 hours
D 3 hours 30 minutes

Today's Challenge

1. Mr. Semrani began working in his yard at 9:45 A.M. He took a lunch break at 11:30 A.M. How long did Mr. Semrani work in his yard?

A 2 hours
B 1 hour 45 minutes
C 1 hours 30 minutes
D 1 hour 15 minutes

2. Channing began listening to her favorite hip-hop CD at 7:35 P.M. She turned off the music at 9:05 P.M. when her mother told her to take a shower. How long did Channing listen to the music?

A 2 hours 40 minutes
B 1 hour 45 minutes
C 1 hour 40 minutes
D 1 hour 30 minutes

Total points for Today's Challenge:

On today's activity: (Circle one) I did great! I did OK. I need some help.

Name Date
Today's Challenge

1. Complete the table. Write all fractions in simplest form.

2. Look at the pattern of fractions in the **Pounds** column. Explain why every other entry is in sixteenths of a pound.

<table>
<thead>
<tr>
<th>Ounces</th>
<th>Pounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/16</td>
</tr>
<tr>
<td>4</td>
<td>3/16</td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7/16</td>
</tr>
<tr>
<td>8</td>
<td>5/8</td>
</tr>
<tr>
<td>9</td>
<td>3/4</td>
</tr>
<tr>
<td>13</td>
<td>7/8</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
</tr>
</tbody>
</table>

Go Further

3. Think of another pair of measures with a ratio of 16:1.

My measures: There are ___________ in one ___________.

Complete the table.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>13/16</td>
</tr>
<tr>
<td>8</td>
<td>1/4</td>
</tr>
<tr>
<td>1</td>
<td>1/8</td>
</tr>
</tbody>
</table>

4. Compare tables with a friend. Did you choose the same measures?

Be careful here!

5. Are your table entries the same?

If not, should they be? ___________

Explain. ___________

Friend's name ___________

On today's activity: (Circle one) I did great! I did OK. I need some help.

106 Name

Date
Today's Challenge Write the answers. Then, number the answers in order from least to greatest.

<table>
<thead>
<tr>
<th></th>
<th>Answer</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>What is the number of days in three weeks?</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>What is the number of minutes in two hours?</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>What is ten less than the number of inches in four feet?</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>What is the number of months in four years?</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>What is the number of seasons in two years?</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>What is the remainder when 99 is divided by 10?</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>What is the number of faces on six cubes?</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>What is the number of eggs in a dozen and a half?</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>What is the number of pennies with a value the same as five dimes?</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>What is the number of ounces in a quart?</td>
<td></td>
</tr>
</tbody>
</table>

Go Further Write two problems as given below. Ask a friend to solve the problems.

11. Write a problem that has an answer less than the least answer in exercises 1–10.

 __
 __

12. Write a problem that has an answer greater than the greatest answer in exercises 1–10.

 __
 __

 Friend’s name ____________________________

On today’s activity: (Circle one) I did great! I did OK. I need some help.

Name ____________________________ Date ______
Today's Challenge Complete the table.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>95 minutes after 10:53 A.M.</td>
</tr>
<tr>
<td>3.</td>
<td>101 minutes after 11:35 P.M.</td>
</tr>
<tr>
<td>5.</td>
<td>11 minutes before 1:07 P.M.</td>
</tr>
<tr>
<td>7.</td>
<td>85 minutes after 9:25 A.M.</td>
</tr>
<tr>
<td>9.</td>
<td>130 minutes before 2:50 A.M.</td>
</tr>
<tr>
<td>11.</td>
<td>75 minutes after 10:40 A.M.</td>
</tr>
<tr>
<td>13.</td>
<td>22 minutes before 12:17 P.M.</td>
</tr>
<tr>
<td>15.</td>
<td>71 minutes before 1:14 P.M.</td>
</tr>
<tr>
<td>17.</td>
<td>105 minutes after 10:00 P.M.</td>
</tr>
<tr>
<td>19.</td>
<td>54 minutes before 2:10 A.M.</td>
</tr>
</tbody>
</table>

On today's activity: (Circle one) I did great! I did OK. I need some help.

Name

Date
Today’s Challenge You gave the cashier $1.00. Loop a string of coins that add up to the correct change for each purchase. Then list the coins you looped.

1. Your purchase is 25¢. ________________________
2. Your purchase is 58¢. ________________________
3. Your purchase is 49¢. ________________________
4. Your purchase is 63¢. ________________________
5. Your purchase is 59¢. ________________________

Go Further Write a word problem that involves making change from $1.00. Have a friend solve the problem.

__
__
__
__
__

Friend’s name ________________________________

On today’s activity: (Circle one) I did great! I did OK. I need some help.

Name ____________________ Date ____________
Get Started Rule out two. Write why. Fill in the correct circle.

Which of the following angle measurements are those of an acute equilateral triangle?

A 60°, 60°, 60°
B 90°, 45°, 45°
C 70°, 60°, 50°
D 100°, 25°, 55°

Today’s Challenge

1. Which of the following angle measurements can be found in an acute scalene triangle?

A 75°, 45°, 60°
B 90°, 20°, 70°
C 110°, 30°, 40°
D 80°, 20°, 80°

2. Which of the following angle measurements can be found in an obtuse isosceles triangle?

A 100°, 50°, 30°
B 90°, 35°, 45°
C 75°, 75°, 30°
D 100°, 40°, 40°

Total points for Today's Challenge: _______________________

On today’s activity: (Circle one) I did great! I did OK. I need some help.
Today's Challenge

1. Complete the table.

2. Write a sentence that describes the relationship between the cups of water needed and the number of eggs needed.

<table>
<thead>
<tr>
<th>Boxes of Mix</th>
<th>Eggs</th>
<th>Cups of Water</th>
<th>People Served</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>6</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>8</td>
<td>40</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Write a ratio that describes the relationship in exercise 2.
(Hint: Remember that the order is important in a ratio.)

4. Study the patterns in the table. Fill in the blanks with the patterns you have discovered.
 Two boxes of mix need 2 eggs and 4 cups of water and will serve 20 people.
 Four boxes of mix need 4 eggs and 8 cups of water and will serve 40 people.
 B boxes of mix need ________ eggs and ________ cups of water
 and will serve ________ people.

Go Further

5. Use a ratio. Compare the number of eggs in one batch of brownies with the number of eggs in two batches.

6. Write a ratio that compares the cups of water in one batch to the cups of water in two batches.

7. Check the ratios of one batch to other numbers of batches. How are the ratios of batches to batches, eggs to eggs, and water to water related?

On today's activity: (Circle one) I did great! I did OK. I need some help.

Name

Date
Today's Challenge Use the answer to one exercise as your starting point for the next exercise. If you fill in all the answers correctly, you should end up with what you started with.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Start with $12.00. What is five times this much?</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>I spent 60% of this amount of money. How much did I have left?</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>How many $8.00 books can I buy with this amount?</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>I have saved my $2.50 allowance for this many weeks. How much do I have now?</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>I spend a five-dollar bill, two one-dollar bills, a quarter, and a dime. How much do I have left?</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>I made this amount from seven coins. Two of the coins are the same. What is the value of each of these two coins?</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>If I have a collection of 140 coins that are each worth this much, how much is my collection worth?</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>If a magazine costs $3.50 how many can I buy with the nickels in my collection?</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>I want to buy this many bags of chips at 80¢ each and a bottle of soda for $1. How much do I need?</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Add a ten-dollar bill and take away two quarters and a dime. How much do I have now?</td>
<td>$12.00</td>
</tr>
</tbody>
</table>

Go Further

<table>
<thead>
<tr>
<th></th>
<th>50¢ half-dollar</th>
<th>25¢ quarter</th>
<th>10¢ dime</th>
<th>5¢ nickel</th>
<th>1¢ penny</th>
</tr>
</thead>
<tbody>
<tr>
<td>11. Using exactly 16 coins, make each row worth $1.00. If a block is filled in, it means you can't use any of those coins.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 2</td>
</tr>
</tbody>
</table>

On today's activity: (Circle one) I did great! I did OK. I need some help.
Get Started For each question, write yes or no. Remember to calculate the change with the least number of coins and bills.

I bought an item for $2.65. I paid with a five-dollar bill.

1. Does my change include any pennies? ________
2. Does my change include more than one dime? ________
3. Does my change include more than one quarter? ________
4. Is my change more than $2.25? ________

I bought an item for $3.16. I paid with a five-dollar bill.

5. Does my change include any nickels? ________
6. Does my change include more than two pennies? ________
7. Does my change include more than one dime? ________
8. Is my change less than $1.90? ________

Go Further Solve this riddle.

9. **Clues**: • I bought an item for $3.68.
 • I paid with a five-dollar bill.
 • I received change using the least number of coins and bills.

What coins and bills do I have? ____________________________

10. Write your own riddle for a friend to solve.

Clues: ____________________________

What coins and bills do I have? ____________________________

Friend’s name ____________________________

On today’s activity: (Circle one) I did great! I did OK. I need some help.

Name ____________________________

Date ____________________________
Today’s Challenge Look for strings of digits that can be used to make multiplication equations that have 11 or 12 as a factor.

```
 1 2 1 1
 1 6 7 2
 3 6 6 5
 3 3 0 9
```

Write the equations you make.

Go Further Fill in the missing products. Then write about any patterns you see.

1. $11 \times 5 = \underline{\hspace{2cm}}$
2. $12 \times 5 = \underline{\hspace{2cm}}$
3. $11 \times 9 = \underline{\hspace{2cm}}$
4. $12 \times 9 = \underline{\hspace{2cm}}$
5. $11 \times 10 = \underline{\hspace{2cm}}$
6. $12 \times 10 = \underline{\hspace{2cm}}$
7. $11 \times 20 = \underline{\hspace{2cm}}$
8. $12 \times 20 = \underline{\hspace{2cm}}$

On today’s activity: (Circle one) I did great! I did OK. I need some help.
Get Started Rule out two. Write why. Fill in the correct circle.

Which phrase best describes the attributes of a parallelogram?

A opposite sides of equal length and parallel

B four congruent angles

C all sides of equal length and parallel

D one pair of parallel sides

Today’s Challenge

1. Which phrase best describes the attributes of a trapezoid?

A opposite sides of equal length and parallel

B one pair of parallel sides

C four sides of equal length

D four congruent angles

2. Which phrase best describes the attributes of a rhombus?

A parallelogram with four right angles

B parallelogram with four congruent angles

C parallelogram with four congruent sides

D none of the above

Total points for Today’s Challenge:

On today’s activity: (Circle one) I did great! I did OK. I need some help.

Name

Date
Today’s Challenge

1. Complete the table.

<table>
<thead>
<tr>
<th>Liters (L)</th>
<th>Milliliters (mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>1</td>
</tr>
<tr>
<td>0.002</td>
<td>2</td>
</tr>
<tr>
<td>0.003</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td>0.006</td>
<td></td>
</tr>
<tr>
<td>0.007</td>
<td>8</td>
</tr>
</tbody>
</table>

2. Why do you think 10 milliliters is the same as 0.010 liters instead of 0.0010 liters?

__

3. How many milliliters are in 0.02 liters?

__

4. How many milliliters are in 0.2 liters?

__

5. How many milliliters are in 2 liters?

__

Go Further

6. Study the first row of the table, then fill in the blanks.

<table>
<thead>
<tr>
<th>Liter Equivalents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 liter = 10 deciliters = 100 centiliters = 1000 milliliters</td>
</tr>
<tr>
<td>0.25 liter = 2.5 deciliters = =</td>
</tr>
<tr>
<td>0.5 liter = 5 deciliters = =</td>
</tr>
<tr>
<td>0.75 liter = = =</td>
</tr>
</tbody>
</table>

On today’s activity: (Circle one) I did great! I did OK. I need some help.
Today’s Challenge

The answer to exercise 10 should be the same as the answer to exercise 1.

1. What is half of 10? _______
2. Add the answer to exercise 1 to the number of eggs in a dozen. _______
3. Take the answer to exercise 2 and subtract the number of sides on a hexagon. _______
4. Multiply the answer to exercise 3 by the number of things in a trio. _______
5. Take the answer to exercise 4 and subtract the number of letters in the alphabet. _______
6. Take the answer to exercise 5 and add the number of inches in a foot. _______
7. Take the answer to exercise 6 and add the number of days in a week. _______
8. Find half of the answer to exercise 7. _______
9. Take the answer to exercise 8 and add half of sixteen. _______
10. Take the answer to exercise 9 and subtract one third of it.
 Then find the sum of the digits in the answer. _______

Go Further

11. Write a 6-step problem like Today’s Challenge that starts and ends with your age. Ask a friend to solve it.

__
__
__
__
__
__

Friend’s name ____________________________

On today’s activity: (Circle one) I did great! I did OK. I need some help.

Name ____________________________ Date _______
Go Further Solve the riddles.

1. **Riddle 1:**
 - I am an estimate for $59,386 - 5,298$.
 - I was found by using an adding up strategy.
 - I am a number greater than 54,010 and less than 54,087.
 What number am I? __________

2. **Riddle 2:**
 - I am an estimate for $37,942 - 5,695$.
 - I was found by rounding both numbers to the thousands place.
 - I am a number greater than 20,000 and less than 40,000.
 What number am I? __________

3. **Riddle 3:** Fill in the blanks to make and solve your riddle.
 - I am an estimate for __________ - __________.
 - I was found by ____________________________.
 - I am a number greater than __________ and less than __________.
 What number am I? __________

4. **Riddle 4:** Now write your own riddle for a friend to solve.
 - __________________________

 What number am I? __________
 Friend’s name __________________________

On today’s activity: (Circle one) I did great! I did OK. I need some help.
Today’s Challenge Look for strings of digits that can be used to make addition and subtraction equations that have even-number answers. Use 2 three-digit numbers in each equation.

Write the equations.

Go Further Solve the problems. Then, in your own words explain why the answers are odd or even.

1. \(234 + 168 = \)
2. \(211 + 150 = \)
3. \(234 - 168 = \)
4. \(211 - 150 = \)

On today’s activity: (Circle one) I did great! I did OK. I need some help.

Name
Date
Get Started Rule out two. Write why. Fill in the correct circle.

Of the numbers 0 through 100, which is the greatest prime number?

A 91
B 93
C 97
D 99

Today’s Challenge

1. The factors of 100 are 1, 2, 4, 5, 10, 20, 25, 50, and 100. Which of these factors are prime?
 A 1, 2, 5
 B 2, 5
 C 1, 2
 D 5

2. The factors of 36 are 1, 2, 3, 4, 6, 9, 12, and 36. Which of these factors are composite?
 A 3, 4, 6, 12, 36
 B 4, 6, 12, 36
 C 2, 4, 6, 9, 12, 36
 D 4, 6, 9, 12, 36

Total points for Today’s Challenge: __________

On today’s activity: (Circle one) I did great! I did OK. I need some help.
Today's Challenge

1. This segment is divided into equal parts.
 How many parts? ________
 Name one part. ________

2. This segment is divided into equal parts.
 How many parts? ________
 Name one part. ________

3. Draw a segment and mark eight equal parts. Label each part \(\frac{0}{8}, \frac{1}{8}, \frac{2}{8}, \text{and so on} \).

4. Draw a segment and mark 12 equal parts. Label each part.

Go Further
Use this diagram to show your answers for exercises 5–8.

5. Put a circle around the mark at \(\frac{1}{10} \).

6. Put a box around the mark at \(\frac{1}{2} \).

7. Put an X on the mark at \(\frac{2}{5} \).

8. Put a star on the mark at \(\frac{7}{10} \).

On today's activity: (Circle one)
I did great! I did OK. I need some help.

Name
Date
Today's Challenge Which is greater? By how much?

<table>
<thead>
<tr>
<th></th>
<th>Which is greater?</th>
<th>Which Is Greater?</th>
<th>How Much Greater?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Which is greater, $\frac{1}{3}$ of 33 or $\frac{1}{4}$ of 48?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Which is greater, $\frac{1}{5}$ of 35 or $\frac{1}{4}$ of 36?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Which is greater, $\frac{1}{6}$ of 102 or $\frac{1}{2}$ of 36?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Which is greater, $\frac{3}{4}$ of 64 or $\frac{5}{9}$ of 81?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Which is greater, $\frac{2}{3}$ of 30 or $\frac{3}{8}$ of 56?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Which is greater, $\frac{5}{8}$ of 96 or $\frac{7}{8}$ of 72?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Which is greater, $\frac{1}{8}$ of 96 or $\frac{2}{7}$ of 35?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Which is greater, $\frac{4}{5}$ of 30 or $\frac{4}{7}$ of 49?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Which is greater, $\frac{2}{5}$ of 100 or $\frac{2}{3}$ of 60?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Which is greater, $\frac{2}{3}$ of 30 or $\frac{2}{9}$ of 81?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Go Further

11. Write three of your own Which Is Greater? problems. For one of them, make sure the answer is neither. Ask a friend to solve your problems.

__

__

Friend’s name

12. If you know that $\frac{3}{4}$ of a number is nine, what is the number? What is $\frac{2}{3}$ of the same number? How did you solve the problems?

__

__

On today’s activity: (Circle one) I did great! I did OK. I need some help.

122 Name Date
Today’s Challenge Complete the table.

<table>
<thead>
<tr>
<th>Right Angle</th>
<th>Acute Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>2.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>4.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>6.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>8.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

On today’s activity: (Circle one)

- I did great!
- I did OK.
- I need some help.

Name

Date
Today's Challenge: Look for strings of digits that can be used to make multiplication equations with products greater than 250 and less than 300. Each equation must include a one-digit and a two-digit factor. The product will be included as part of the string.

Write the equations you make.

Go Further: Create your own Math Jumble. Include at least three pairs of numbers with a product greater than 250 and less than 300. Each equation must include a one-digit and a two-digit factor. Remember to include the product in each string you make. Have a friend use your Math Jumble to find three multiplication equations with products greater than 250 and less than 300.

Friend's name ___________________________

On today's activity: (Circle one) I did great! I did OK. I need some help.

124 Name

Date
Get Started Rule out two. Write why. Fill in the correct circle.

Carmen ate $\frac{1}{4}$ of a small pepperoni pizza and $\frac{1}{2}$ of a small sausage pizza. Which of the following answer choices best describes how much pizza Carmen ate?

A less than $\frac{1}{4}$ of a pizza ____________________________
B less than $\frac{1}{2}$ of a pizza ____________________________
C less than 1 whole pizza ____________________________
D more than 1 whole pizza ____________________________

Today’s Challenge

1. Armando listened to a hip-hop CD for $\frac{3}{4}$ of an hour. He listened to a rock and roll CD for $\frac{1}{2}$ of an hour. Which of the following answer choices best describes how long Armando listened to music?

A less than $\frac{1}{4}$ of an hour ____________________________
B exactly $\frac{1}{2}$ of an hour ____________________________
C exactly 1 hour ____________________________
D more than 1 hour ____________________________

2. Truman started with 200 free minutes of calls on his cell phone. He used $\frac{1}{8}$ of his total minutes talking to his father. He used $\frac{1}{4}$ of his total minutes talking to friends over the weekend. Which of the following best describes the total amount of time Truman has already used?

A less than $\frac{1}{4}$ of the time ____________________________
B less than $\frac{1}{2}$ of the time ____________________________
C exactly $\frac{1}{2}$ of the time ____________________________
D all of the time ____________________________

Total points for Today’s Challenge: ____________________________

On today’s activity: (Circle one) I did great! I did OK. I need some help.

Name ____________________________ Date ____________________________
Today's Challenge

1. Complete the table.

2. Look at the pattern of sound effects in the table. Imagine you came in for lunch at 12:07 and left at 12:49. Predict how many times you would have heard all three effects together. _______
 Explain your prediction. ________________________________

Go Further

3. Imagine that you are the restaurant manager. You want to add another sound effect. What would you add? _______________________
 How often would your effect happen? _______________________

4. Make a table for 1 1/2 hours. Use a separate sheet of paper.

<table>
<thead>
<tr>
<th>Time</th>
<th>Thunderstorm</th>
<th>Parrots</th>
<th>Lion</th>
<th>(Your effect)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00 A.M.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>8:05 A.M.</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8:10 A.M.</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8:15 A.M.</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8:20 A.M.</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8:25 A.M.</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8:30 A.M.</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8:35 A.M.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8:40 A.M.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8:45 A.M.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8:50 A.M.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8:55 A.M.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:00 A.M.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:05 A.M.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:10 A.M.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:15 A.M.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:20 A.M.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:25 A.M.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:30 A.M.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. Did all four sound effects ever happen at the same time? _______________________
 Explain. ________________________________

6. Look at the pattern in your table and predict the first time after 10 A.M. that all four effects will happen at once. _______________________
 Explain your prediction. Use a separate sheet of paper.

On today's activity: (Circle one) I did great! I did OK. I need some help.

126 Name ____________________________ Date ____________
Today's Challenge
Complete the table.

<table>
<thead>
<tr>
<th>Figure</th>
<th>Dimensions</th>
<th>Area</th>
<th>Perimeter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rectangle</td>
<td>length: 11 centimeters width: 14 centimeters</td>
<td>1.</td>
<td>2.</td>
</tr>
<tr>
<td>Square</td>
<td>length: width:</td>
<td>64 square inches</td>
<td>4.</td>
</tr>
<tr>
<td>Rectangle</td>
<td>length: width:</td>
<td>117 square feet</td>
<td>44 feet</td>
</tr>
<tr>
<td>Square</td>
<td>length: width:</td>
<td>7.</td>
<td>36 yards</td>
</tr>
<tr>
<td>Rectangle</td>
<td>length: 12 feet width: 15 feet</td>
<td>8.</td>
<td>9.</td>
</tr>
<tr>
<td>Square</td>
<td>length: width:</td>
<td>100 square feet</td>
<td>11.</td>
</tr>
<tr>
<td>Rectangle</td>
<td>length: width:</td>
<td>20 square inches</td>
<td>24 inches</td>
</tr>
</tbody>
</table>

Go Further

15. Find three possible perimeters for a rectangle with an area of 20 square feet. Use whole-number units.

16. Relate your answer to exercise 15 to the factors for 20.

17. Find four possible areas for a rectangle with a perimeter of 16 feet. Use whole-number units.

18. Do you think there could be more than four answers to exercise 17? Explain.

On today's activity: (Circle one) I did great! I did OK. I need some help.

Name

Date

127
Get Started
For each question, write yes or no.

1. Is the shape a triangle? ________
2. Does it have any acute angles? ________
3. Does it have any right angles? ________
4. Do any of the angles measure more than 90 degrees? ________

5. Is the shape a quadrilateral? ________
6. Does it have any acute angles? ________
7. Does it have a line of symmetry? ________
8. Do any of the angles measure 90 degrees? ________

Go Further
Solve this riddle.

9. **H I L E S:**
 - I am a polygon with an even number of sides.
 - I have four right angles.
 - I have two pairs of congruent, parallel sides.
 What is my name? __________________________

10. Write your own riddle for a friend to solve.

 R I D D L E: __
 __
 __
 __
 What is my name? __________________________

On today's activity: (Circle one) I did great! I did OK. I need some help.
Today's Challenge: Find strings of digits that can be used to make addition equations for decimals with sums that are greater than 1 and less than 1.50. You must supply the zeroes in the ones places and the sum for each equation.

Write each complete equation:

Go Further: Create your own Math Jumble. Include at least five addition equations for decimals with sums that are greater than 1 and less than 1.50. Have a friend find the equations you have made. Your friend must supply the zeroes in the ones places and the sum for each equation. Have your friend write each complete equation below.

Friend's name

On today's activity: (Circle one) I did great! I did OK. I need some help.
Get Started Rule out two. Write why. Fill in the correct circle.

Hank arrived at the amusement park at 10:20 A.M. He left when the park closed at 6:30 P.M. How long was Hank at the park?

A 16 hours 50 minutes
B 8 hours 50 minutes
C 8 hours 10 minutes
D 4 hours 10 minutes

Today’s Challenge

1. Gretchen started watching a late-night movie at 10:30 P.M. She fell asleep on the sofa at 11:30 P.M. When she woke up, it was 5:15 A.M. How long was she asleep?

A 5 hours 45 minutes
B 6 hours 15 minutes
C 7 hours 15 minutes
D 16 hours 45 minutes

2. Mrs. Stafford arrived at the mall when it opened at 9:00 A.M. She shopped until 1:00 P.M. After a 45-minute lunch break she resumed shopping. She finished shopping at 4:50 P.M. How long did Mrs. Stafford actually shop?

A 13 hours 50 minutes
B 7 hours 50 minutes
C 7 hours 5 minutes
D 5 hours 50 minutes

Total points for Today’s Challenge:

On today’s activity: (Circle one) I did great! I did OK. I need some help.

Name

Date
Today's Challenge

1. Complete the diagram.

2. Can you catch the route 27 bus at noon? __________
 Explain your answer. __________

3. If you miss the 9:15 A.M. bus, when will the next one arrive? __________

4. If you miss the 12:30 P.M. bus, when will the next one arrive? __________

Go Further

5. Here's part of the route 27 bus time line. Add the route 32 schedule to this time line. You will need to add some new tick marks. Why?

<table>
<thead>
<tr>
<th>Route 27 Bus Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 A.M.–8 A.M.</td>
</tr>
<tr>
<td>8 A.M.–10 A.M.</td>
</tr>
<tr>
<td>10:30 A.M.–4:30 P.M.</td>
</tr>
<tr>
<td>4:30 P.M.–6:30 P.M.</td>
</tr>
<tr>
<td>6:30 P.M.–8 P.M.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Route 27 Bus Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Every half hour</td>
</tr>
<tr>
<td>Every 15 minutes</td>
</tr>
<tr>
<td>Every hour on the half hour</td>
</tr>
<tr>
<td>Every 15 minutes</td>
</tr>
<tr>
<td>Every half hour</td>
</tr>
</tbody>
</table>

6. From 6 A.M. to noon, at what times do the buses arrive at the same time?

7. You want to take the route 32 bus. If you arrive at the bus stop at 7:45 A.M., when will the next bus pick you up? __________
 What if you arrive at 10:30 A.M.? __________
 What if you arrive at 6:15 A.M.? __________

On today's activity: (Circle one) I did great! I did OK. I need some help.

Name ____________________________ Date ____________
Today's Challenge

1. If three circles cost $1.50, what is the cost of two circles? __________

2. If two rectangles cost $3.00, what is the cost of five rectangles? __________

3. If two ovals cost $0.25, what is the cost of ten ovals? __________

4. If three balls cost $0.50, what is the cost of twelve balls? __________

5. If five stars cost $10.00 what is the cost of eight stars? __________

6. If a triangle costs $0.50, what is the cost of a half dozen triangles? __________

7. If three circles cost $1.50, what is the cost of seven circles? __________

8. If two rectangles cost $3.00 what is the cost of a dozen rectangles? __________

9. If two ovals cost $0.25 how many ovals could you buy for five dollars? __________

10. If three balls cost $0.50 and two ovals cost $0.25, how many balls would cost the same as a dozen ovals? __________

Go Further Three circles cost $1.50, two ovals cost $0.25, three balls cost $0.50, and two rectangles cost $3.00.

11. How many circles could you get for $1.00? __________

12. How many ovals could you get for $1.00? __________

13. How many balls could you get for $1.00? __________

14. What could cost the same as six circles, six rectangles, six ovals and six balls? __________

On today's activity: (Circle one) I did great! I did OK. I need some help.
Go Further

Follow the directions to cross out the fractions.

<table>
<thead>
<tr>
<th>$\frac{4}{6}$</th>
<th>$\frac{3}{4}$</th>
<th>$\frac{1}{2}$</th>
<th>$\frac{2}{9}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{2}{9}$</td>
<td>$\frac{5}{8}$</td>
<td>$\frac{3}{5}$</td>
<td>$\frac{5}{7}$</td>
</tr>
<tr>
<td>$\frac{3}{4}$</td>
<td>$\frac{6}{7}$</td>
<td>$\frac{4}{6}$</td>
<td>$\frac{5}{7}$</td>
</tr>
<tr>
<td>$\frac{3}{5}$</td>
<td>$\frac{6}{7}$</td>
<td>$\frac{5}{8}$</td>
<td>$\frac{1}{2}$</td>
</tr>
</tbody>
</table>

- Cross out all fractions equal to $\frac{1}{5} + \frac{2}{5}$.
- Cross out all fractions equal to $\frac{2}{6} + \frac{2}{6}$.
- Cross out all fractions equal to $\frac{1}{9} + \frac{1}{9}$.
- Cross out all fractions equal to $\frac{1}{4} + \frac{2}{4}$.
- Cross out all fractions equal to $\frac{1}{8} + \frac{4}{8}$.
- Cross out all fractions equal to $\frac{2}{7} + \frac{3}{7}$.
- Cross out all fractions equal to $\frac{3}{7} + \frac{3}{7}$.

1. Which fraction is not crossed out? __________

Write two equations to equal each fraction below.

Example: $\frac{4}{5} = \frac{2}{5} + \frac{2}{5} = \frac{1}{5} + \frac{3}{5} = \frac{4}{5}$

2. __________

3. __________

On today's activity: (Circle one) I did great! I did OK. I need some help.

Name __________ Date __________
Today's Challenge Loop a string of coins and bills that add up to each money amount. Then list the coins and bills you looped.

1. 36¢
2. $1.46
3. 71¢
4. $1.16
5. $1.66

Go Further Create your own Math Jumble. Fill in the grid using pennies, nickels, dimes, quarters, and one-dollar bills to make strings that add up to less than $2.00. Choose and write five money amounts that can be found on your Math Jumble. Have a friend loop the strings of coins and bills that can be used to make the amounts you have written. Then have your friend list the coins and bills he or she looped.

Friend’s name

On today’s activity: (Circle one) I did great! I did OK. I need some help.
Get Started Rule out two. Write why. Fill in the correct circle.

Which ordered pair does point B represent?

A (4, 8)
B (8, 5)
C (9, 4)
D (8, 4)

Today's Challenge

1. Which ordered pair does point A represent?

A (1, 0)
B (0, 1)
C (0, 0)
D (1, 1)

2. Which point is located at ordered pair (5, 1)?

A C
B D
C E
D F

Total points for Today's Challenge:

On today’s activity: (Circle one) I did great! I did OK. I need some help.

Name

Date
Today’s Challenge

1. Complete the list by writing all the two-filling combinations.

 Yum-wiches

 with tomato with peppers with mayonnaise with cheese with lettuce
 T-P P-M
 T-M P-C
 T-C P-L
 T-L P-T

2. Cross off the duplicate yum-wiches.

3. How many different yum-wiches can be made? ____________

4. What pattern do you see in the crossed-off duplicates?

Go Further

5. Use what you learned in exercises 1–4. Predict the number of
tuna yum-wiches that could be made with six filling choices. ____________
Show and explain your work.

6. Compare your answer to exercise 5 with a friend’s answer. Discuss any differences
and try to agree on an answer. Write a summary of your discussion.

 Friend’s name ___

On today’s activity: (Circle one) I did great! I did OK. I need some help.
Today's Challenge Complete the table.

Examples:
- $\frac{2}{5}$ of a foot is 4 inches.
- $\frac{1}{5}$ of a dollar is 20 cents.
- $\frac{1}{2}$ hour is 30 minutes.

<table>
<thead>
<tr>
<th></th>
<th>Inches in □ Foot</th>
<th>Ounces in □ Pound</th>
<th>Hours in □ Day</th>
<th>Minutes in □ Hour</th>
<th>Cents in □ Dollar</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{2}$</td>
<td>1.</td>
<td>2.</td>
<td>3.</td>
<td>4.</td>
<td>5.</td>
</tr>
<tr>
<td>$\frac{2}{3}$</td>
<td>6.</td>
<td></td>
<td>7.</td>
<td>8.</td>
<td></td>
</tr>
<tr>
<td>$\frac{3}{4}$</td>
<td>9.</td>
<td>10.</td>
<td>11.</td>
<td>12.</td>
<td>13.</td>
</tr>
<tr>
<td>$\frac{1}{4}$</td>
<td>14.</td>
<td>15.</td>
<td>16.</td>
<td></td>
<td>17.</td>
</tr>
<tr>
<td>$\frac{1}{8}$</td>
<td></td>
<td>18.</td>
<td>19.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\frac{1}{6}$</td>
<td>20.</td>
<td></td>
<td>21.</td>
<td>22.</td>
<td></td>
</tr>
<tr>
<td>$\frac{2}{5}$</td>
<td></td>
<td></td>
<td></td>
<td>23.</td>
<td>24.</td>
</tr>
<tr>
<td>$\frac{1}{3}$</td>
<td>25.</td>
<td></td>
<td>26.</td>
<td>27.</td>
<td></td>
</tr>
<tr>
<td>$\frac{5}{6}$</td>
<td>28.</td>
<td></td>
<td>29.</td>
<td>30.</td>
<td></td>
</tr>
</tbody>
</table>

31. Why do you think some cells in the table are shaded?

Go Further There are 5280 feet in one mile.

32. How many feet are in $\frac{1}{2}$ mile? _______
33. How many feet are in $\frac{2}{3}$ mile? _______

34. How many feet are in $\frac{3}{4}$ mile? _______
35. How many feet are in $\frac{1}{4}$ mile? _______

36. How many feet are in $\frac{1}{8}$ mile? _______
37. How many feet are in $\frac{1}{6}$ mile? _______

38. How many feet are in $\frac{2}{5}$ mile? _______
39. How many feet are in $\frac{1}{3}$ mile? _______

40. How many feet are in $\frac{5}{6}$ mile? _______

On today's activity: (Circle one) I did great! I did OK. I need some help.

Name
Date
Get Started Complete the table.

<table>
<thead>
<tr>
<th>Quadrilateral</th>
<th>Pairs of Parallel Sides</th>
<th>Pairs of Congruent Sides</th>
<th>Number of Right Angles</th>
</tr>
</thead>
<tbody>
<tr>
<td>trapezoid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>parallelogram</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rectangle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rhombus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>square</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Go Further

1. Solve this riddle.
 BLUES:
 - I have 1 pair of parallel sides.
 - I have no congruent sides.
 - I have no right angles.
 - I am a quadrilateral.

 What is my name? __________________________

2. Fill in the blanks to make and solve your riddle.
 BLUES:
 - I have __________ parallel sides.
 - I have __________ congruent sides.
 - I have __________ right angles.
 - I am a quadrilateral.

 What is my name? __________________________

3. Now write your own riddle for a friend to solve.
 BLUES: ________________________________

 What is my name? __________________________
 Friend’s name ____________________________

On today’s activity: (Circle one) I did great! I did OK. I need some help.
Today’s Challenge: Look for two-digit numbers that, when multiplied by \(\frac{1}{2} \), equal whole numbers. Write the facts you find in word form and using math symbols.

one half of _____ is _____; \(\frac{1}{2} \times _____ = _____

one half of _____ is _____; \(\frac{1}{2} \times _____ = _____

one half of _____ is _____; \(\frac{1}{2} \times _____ = _____

one half of _____ is _____; \(\frac{1}{2} \times _____ = _____

one half of _____ is _____; \(\frac{1}{2} \times _____ = _____

Go Further: Create your own Math Jumble.
Include 3 two-digit numbers that, when multiplied by \(\frac{1}{3} \), equal whole numbers. Also include 2 two-digit numbers that, when multiplied by \(\frac{1}{4} \), equal whole numbers. Have a friend use your Math Jumble to find the five facts you have made.
Have your friend write the facts below.

1. one third of _____ is _____; \(\frac{1}{3} \times _____ = _____

2. one third of _____ is _____; \(\frac{1}{3} \times _____ = _____

3. one third of _____ is _____; \(\frac{1}{3} \times _____ = _____

4. one fourth of _____ is _____; \(\frac{1}{4} \times _____ = _____

5. one fourth of _____ is _____; \(\frac{1}{4} \times _____ = _____

Friend’s name

On today’s activity: (Circle one) I did great! I did OK. I need some help.

Name

Date
Get Started Rule out two. Write why. Fill in the correct circle.

Which of these phrases best describes a right isosceles triangle?

A largest angle right, all sides congruent

B largest angle obtuse, 2 congruent sides

C largest angle right, 2 congruent sides

D largest angle right, sides of different lengths

Today’s Challenge

1. Which of these phrases best describes an obtuse scalene triangle?

A largest angle acute, 2 congruent sides

B largest angle obtuse, all sides congruent

C largest angle right, sides of different lengths

D largest angle obtuse, sides of different lengths

2. Which of these phrases best describes an acute equilateral triangle?

A all angles acute, all sides congruent

B largest angle acute, 2 congruent sides

C all angles acute, sides of different lengths

D all angles congruent, sides of different lengths

Total points for Today’s Challenge:

On today’s activity: (Circle one) I did great! I did OK. I need some help.
Today's Challenge

1. Find the perimeter for figures 4, 5, and 6.

- Figure 1: \(s = 1 \text{ cm} \), \(P = 3 \text{ cm} \)
- Figure 2: \(s = 2 \text{ cm} \), \(P = 8 \text{ cm} \)
- Figure 3: \(s = 3 \text{ cm} \), \(P = 15 \text{ cm} \)
- Figure 4: \(s = 4 \text{ cm} \), \(P = \) __________
- Figure 5: \(s = \) __________
- Figure 6: \(s = \) __________

2. How many sides will Figure 7 have? __________

3. How long will each side of Figure 7 be? __________

4. What will be the perimeter of Figure 7? __________

Go Further

5. Look at exercises 1–4.
 How is the figure number related to the length of a side?

6. How is the length of a side in the pattern related to the number of sides?

7. Write a word equation to show this relationship.

8. Rewrite your equation to show how to find the length of a side if you know the number of sides.

9. Predict the perimeter of Figure 10 in the pattern. __________
 Explain your prediction.

10. Predict the perimeter of a figure in the pattern with 10 sides. __________
 Explain your prediction.

On today's activity: (Circle one) I did great! I did OK. I need some help.

Name __________

Date __________
Today's Challenge

1. What is seven more than 3×8?

2. What is 20 less than 10×10?

3. What is six more than 6×5?

4. What is seven less than 9×9?

5. What is five more than 2×7?

6. What is ten less than 5×2?

7. What is six more than 4×5?

8. What is two more than 6×7?

9. What is six more than 4×8?

10. What is six less than 3×5?

11. What is four more than 9×9?

12. What is 40 less than 6×8?

13. What is two more than 8×8?

14. What is five more than 3×4?

15. What is 11 more than 7×9?

Go Further

Example

Words: How much is seven more than 3×8?

Equation: $(3 \times 8) + 7 = \Box$

16. Write equations for any four problems from exercises 1–10. Ask a friend to match your equations to the exercises you used.

__ _______________________________________

__ _______________________________________

Friend’s name ____________________________

On today’s activity: (Circle one) I did great! I did OK. I need some help.
Get Started Label the giant inch ruler with fractions of an inch.

0 | | | | | | | | 1

Go Further Find an object that answers each riddle.

1. I am more than $1\frac{1}{8}$ inches long but less than $1\frac{9}{16}$ inches long.
 What am I? ____________________________

2. I am more than $\frac{1}{16}$ of an inch long but less than $\frac{1}{2}$ of an inch long.
 What am I? ____________________________

Fill in the blanks with fractions to make a measurement riddle.

3. **Blues:** • I am more than ________ inches long.
 • I am less than ________ inches long.
 What am I? ____________________________

4. Now write your own riddle for a friend to solve.
 Blues: ____________________________

What am I? ____________________________
Friend’s name ____________________________

On today’s activity: (Circle one) I did great! I did OK. I need some help.

Name ____________________________
Date ____________________________
Today's Challenge: Find non-equivalent fractions to add.

<table>
<thead>
<tr>
<th>3</th>
<th>6</th>
<th>5</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Write the equations you make.

Go Further: Create your own Math Jumble. Include at least five pairs of non-equivalent fractions. Have a friend use your Math Jumble to find and add five pairs of non-equivalent fractions. Have your friend write the equations below.

On today's activity: (Circle one) I did great! I did OK. I need some help.

Friend's name: ________________
On Today’s Activity (Circle one)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Points for Today’s Challenge:

<table>
<thead>
<tr>
<th></th>
<th>0.07</th>
<th>0.07</th>
<th>0.36</th>
<th>0.04</th>
<th>0.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Box A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Box B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Box C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Box D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Today’s Challenge

1. Which decimal and fraction describes the shaded portion of the square below?

<table>
<thead>
<tr>
<th></th>
<th>0.05</th>
<th>0.5</th>
<th>0.50</th>
<th>0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>Box A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Box B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Box C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Box D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Which decimal and fraction describes the shaded portion of the square below?

<table>
<thead>
<tr>
<th></th>
<th>0.38</th>
<th>0.36</th>
<th>0.44</th>
<th>0.04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Box A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Box B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Box C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Box D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Get Started. Rule Out Two. Write why Fill in the correct circle.

Week 29 Activity 145
Today's Challenge

1. There are 12 different true pentominoes. Two of them are shown.
 Draw the other ten.

 [Diagram of two pentominoes]

Go Further

2. There are eight different true nets for a cube. One of them is shown.
 Draw a different net for a cube.

 [Diagram of cube net]

3. Draw the other six true nets for a cube.

4. Compare your nets with a friend’s nets and agree on the eight nets for a cube.
 Show your changes in a different color in exercise 3.

 Friend’s name ____________________________

On today’s activity: (Circle one) I did great! I did OK. I need some help.
Today’s Challenge

Write each of these 12 expressions in the box that matches its value.

1. 800×70

2. 98×10

3. 6×7

4. 4×26

5. $980 - 971$

6. 8×700

7. $760 - 580$

8. 90×90

9. $1000 - 308$

10. $10,000 - 5280$

11. 9000×2

12. 30×80

Box 1:
Between 1 and 100

Box 2:
Between 100 and 500

Box 3:
Between 500 and 1000

Box 4:
Between 1000 and 5000

Box 5:
Between 5000 and 10,000

Box 6:
Greater than 10,000

Go Further

13. Add one new expression to each box. Draw a loop around your new expressions.

On today’s activity: (Circle one) I did great! I did OK. I need some help.

Name

Date
Get Started. For each question, write yes or no.

1. Does $14.68 round to $14.00? ________
2. Can $14.58 be made with no pennies? ________
3. For $14.68 – $10.32, is $5.00 a reasonable estimate? ________
4. Does $14.58 round to $15.00? ________
5. Does $47.26 round to $48.00? ________
6. Can $47.26 be made with no dimes? ________
7. For $47.26 – $25.75, is $15.00 a reasonable estimate? ________
8. For $47.26 – $16.40, is $31.00 a reasonable estimate? ________

Go Further. Solve this riddle.

9. 21150:
 • I round to $12.00.
 • I am greater than $11.45.
 • I can be made with one $10.00 bill, one $1.00 bill, two quarters, two dimes, one nickel and four pennies.

 What dollar amount am I? __________________________

10. Now write your own riddle for a friend to solve.

 21150:
 __
 __
 __
 __

 What dollar amount am I? __________________________

 Friend’s name __________________________

On today’s activity: (Circle one) I did great! I did OK. I need some help.
Today's Challenge Look for strings of digits that could be used to make number patterns. Write the number patterns. Then write the next three numbers that appear in the pattern.

Number pattern

Next three numbers

Go Further Create your own Math Jumble. Include the first four numbers of three different number patterns. Have a friend use your Math Jumble to find three number patterns. Have your friend write the pattern and the next three numbers in each one.

Number pattern

Next three numbers

Friend’s name _______________________

On today's activity: (Circle one) I did great! I did OK. I need some help.

Name ____________________________ Date ___________
Total Points for Today's Challenge:

1. Study the fraction strips to the right. Which equation describes the relationship between the shaded portions of the fraction strips?

 \[
 \frac{6}{2} = \frac{3}{1} \quad \text{D}
 \]

 \[
 \frac{9}{3} = \frac{3}{1} \quad \text{C}
 \]

 \[
 \frac{4}{2} = \frac{2}{1} \quad \text{B}
 \]

 \[
 \frac{6}{2} = \frac{3}{1} \quad \text{A}
 \]

2. Study the fraction strips to the right. Which equation describes the relationship between the shaded portions of the fraction strips?

 \[
 \frac{9}{3} = \frac{3}{1} \quad \text{D}
 \]

 \[
 \frac{9}{3} = \frac{3}{1} \quad \text{C}
 \]

 \[
 \frac{4}{2} = \frac{2}{1} \quad \text{B}
 \]

 \[
 \frac{6}{2} = \frac{3}{1} \quad \text{A}
 \]

Get Started: Rule Out Two. Write why... Fill in the correct circle.
Today's Challenge

1. Complete the table and graph the results. Name your graph and place the independent variable on the horizontal axis.

<table>
<thead>
<tr>
<th>Number of Haircuts</th>
<th>Amount of Money</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$10</td>
</tr>
<tr>
<td>2</td>
<td>$20</td>
</tr>
<tr>
<td>3</td>
<td>$30</td>
</tr>
<tr>
<td>4</td>
<td>$40</td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

2. Complete this table. Which is the dependent variable?

<table>
<thead>
<tr>
<th>Time</th>
<th>Number of Haircuts</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 minutes</td>
<td>1</td>
</tr>
<tr>
<td>40 minutes</td>
<td></td>
</tr>
<tr>
<td>60 minutes</td>
<td></td>
</tr>
<tr>
<td>2 hours</td>
<td></td>
</tr>
<tr>
<td>3 hours</td>
<td></td>
</tr>
</tbody>
</table>

3. Graph the data for exercise 2. Don’t forget that the time must be in equal increments.

Go Further

4. Look at the data in exercises 2 and 3. Make a new data table that shows how much money can be earned for various time periods.

<table>
<thead>
<tr>
<th>Time</th>
<th>Money</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 minutes</td>
<td></td>
</tr>
<tr>
<td>40 minutes</td>
<td></td>
</tr>
<tr>
<td>60 minutes</td>
<td></td>
</tr>
<tr>
<td>2 hours</td>
<td></td>
</tr>
<tr>
<td>3 hours</td>
<td></td>
</tr>
</tbody>
</table>

5. What is the dependent variable for exercise 4?

On today’s activity: (Circle one) I did great! I did OK. I need some help.

Name

Date
Today's Challenge
Match the words to the decimal numbers. Write the letter of the correct number next to the word.

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. How do you write two hundredths?</td>
<td>A. 0.12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. How do you write fifty-five hundredths?</td>
<td>B. 0.095</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. How do you write one and two tenths?</td>
<td>C. 0.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. How do you write ninety-five thousandths?</td>
<td>D. 0.55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. How do you write ninety-five hundredths?</td>
<td>E. 0.005</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. How do you write seven tenths?</td>
<td>F. 0.53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7. How do you write seven thousandths?</td>
<td>G. 0.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8. How do you write twelve hundredths?</td>
<td>H. 1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9. How do you write fifty-three hundredths?</td>
<td>I. 0.95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10. How do you write five thousandths?</td>
<td>J. 0.007</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Go Further

11. Write the numbers from A–J, above, in order from least to greatest.

12. Find the sum of the numbers you listed in exercise 11. ____________________________

On today's activity: (Circle one) I did great! I did OK. I need some help.
Get Started Complete the table.

<table>
<thead>
<tr>
<th>Quadrilateral</th>
<th>Pairs of Parallel Sides</th>
<th>Pairs of Congruent Sides</th>
<th>Pairs of Right Angles</th>
</tr>
</thead>
<tbody>
<tr>
<td>rectangle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>trapezoid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>square</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rhombus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>parallelogram</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Go Further

1. Solve this riddle.
 BLUES:
 - I have 2 pairs of parallel sides.
 - I have 2 pairs of congruent sides.
 - All of my sides are equal.
 - I am a quadrilateral.

 What is my name? __________________________

2. Fill in the blanks to make and solve your riddle.
 BLUES:
 - I have ___________ parallel sides.
 - I have ___________ congruent sides.
 - I have ___________ right angles.
 - I am a quadrilateral.

 What is my name? __________________________

3. Now write your own riddle for a friend to solve.
 BLUES:

 What is my name? __________________

 Friend’s name ____________________

On today’s activity: (Circle one) I did great! I did OK. I need some help.

Name ___________________________

Date ___________________________
Today's Challenge Look for strings of coins that add up to as close to $1.00 as possible without going over. Write each string of coins and its value.

<table>
<thead>
<tr>
<th>Coins</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Go Further

1. Write the value of the coins in each row of the Math Jumble above.
 Row 1 = ____________ Row 2 = ____________
 Row 3 = ____________ Row 4 = ____________

2. What is the total value of the coins in all four rows? ____________

3. Write the value of the coins in each column of the Math Jumble above.
 Column 1 = ____________ Column 2 = ____________
 Column 3 = ____________ Column 4 = ____________

4. What is the total value of the coins in all four columns? ____________

On today's activity: (Circle one) I did great! I did OK. I need some help.
Get Started Rule out two. Write why. Fill in the correct circle.

Selma painted one wall of her bedroom in bold vertical stripes. One half of the wall was blue and \(\frac{3}{7} \) of the wall was green. The rest of the wall was purple. Which equation shows one way to find out how much more of the wall was blue than green?

A \(\frac{1}{2} - \frac{3}{7} = \frac{7}{2} - \frac{6}{2} \)
B \(\frac{1}{2} - \frac{3}{7} = 7 - 6 \)
C \(\frac{1}{2} - \frac{3}{7} = \frac{7}{12} - \frac{6}{12} \)
D \(\frac{1}{2} - \frac{3}{7} = \frac{7}{14} - \frac{6}{14} \)

Today's Challenge

1. Carly and Mark caught two garden snakes while playing in their grandparent's backyard. The first snake was \(\frac{7}{8} \) of a foot long. The second snake was \(\frac{3}{4} \) of a foot long. Which equation shows one way to find out how much longer the first snake was than the second?

A \(\frac{7}{8} - \frac{3}{4} = \frac{24}{32} - \frac{21}{32} \)
B \(\frac{7}{8} - \frac{3}{4} = 28 - 24 \)
C \(\frac{7}{8} - \frac{3}{4} = \frac{21}{32} \)
D \(\frac{7}{8} - \frac{3}{4} = \frac{28}{32} - \frac{24}{32} \)

2. Mrs. Hill had \(\frac{1}{2} \) of a pan of lasagna left after last night's dinner. Today when she heated up the lasagna for lunch, she ate \(\frac{2}{3} \) of what was left. How much of the lasagna remains to be eaten?

A \(\frac{1}{2} \)
B \(\frac{3}{10} \)
C \(\frac{7}{10} \)
D \(\frac{1}{3} \)

Total points for Today’s Challenge:

On today’s activity: (Circle one) I did great! I did OK. I need some help.

Name Date
Today's Challenge

1. Complete the tables.

<table>
<thead>
<tr>
<th>Haircuts</th>
<th>Amount Earned</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$10</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Haircuts</th>
<th>Amount Earned</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$12</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

2. Graph the data in both tables on the same grid.

3. If Julie, the haircutter, has three customers each hour, how much does she earn in three hours?

$10-haircuts ________

$12-haircuts ________

4. If only two customers come each hour, how much does Julie earn per hour with $12-haircuts? ________

5. Julie can get three customers per hour if she charges $10. She gets only two customers per hour if she charges $12. What do you think she should charge?

_______ Why?

Go Further

6. Complete the table. If Julia gets two customers per hour for a $15 charge and three customers per hour for a $10 charge, what do you think she should charge?

<table>
<thead>
<tr>
<th>Haircuts</th>
<th>Amount Earned</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$15</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Why do you think so?

On today's activity: (Circle one) I did great! I did OK. I need some help.
Today's Challenge: Loop the expression with the greater value.

1. $\frac{2}{3}$ of 150 or 3×33
2. $3 \times 10 \times 10 \times 10$ or one hundred thousand
3. $\frac{3}{4}$ or $\frac{2}{3}$
4. 20×42 or 80×11
5. $\frac{1}{3}$ or thirty-five hundredths
6. $\frac{3}{8}$ of 16 or 50% of 16
7. $68 + 34$ or 10^2
8. $2100 \div 70$ or $\frac{1}{2}$ of 70
9. seven tenths or seven hundredths
10. 70×8 or 80×6

Write the correct comparison.

11. $\frac{2}{3}$ of 150 ______ $\frac{1}{2}$ of 200
12. 4^2 ______ 5×3
13. $\frac{1}{2}$ ______ 0.3
14. four tenths ______ fourteen hundredths
15. $6\frac{1}{2}$ ______ 7.05
16. 70×8 ______ 80×7
17. $2 \times 2 \times 3$ ______ $2 \times 3 \times 3$
18. 250 ______ $5^2 \times 5$
19. $1000 - 560$ ______ $100 - 56$
20. 25×3 ______ 15×5

Go Further

21. Write three Which Is Greater? or Write the Comparison puzzles for a friend to solve.

__

__

__

Friend’s name _____________________________

On today’s activity: (Circle one) I did great! I did OK. I need some help.

Name _____________________________ Date 157
Today's Challenge: Choose words from the word bank to complete the table below.

<table>
<thead>
<tr>
<th>WORD BANK</th>
<th>WORD BANK</th>
</tr>
</thead>
<tbody>
<tr>
<td>yards</td>
<td>hours</td>
</tr>
<tr>
<td>ounces</td>
<td>temperature of boiling water</td>
</tr>
<tr>
<td>minutes</td>
<td>gallons</td>
</tr>
<tr>
<td></td>
<td>weight of a dog</td>
</tr>
<tr>
<td></td>
<td>amount of soup in a bowl</td>
</tr>
<tr>
<td></td>
<td>miles</td>
</tr>
</tbody>
</table>

1. Length of a football field
2. Water in a swimming pool
3. Distance from a town to the next town
4. Time in a school day
5. pounds
6. Length of a pencil
7. Time it takes to eat lunch
8. cups
9. degrees Fahrenheit
10. Weight of a slice of bread

On today's activity: (Circle one)
- I did great!
- I did OK.
- I need some help.
Today's Challenge Look for fractions that, when multiplied, equal \(\frac{1}{10} \).

Write the equations.

Go Further Create your own Math Jumble. Include at least five pairs of fractions that, when multiplied, equal \(\frac{1}{5} \). Have a friend use your Math Jumble to find fractions that, when multiplied, equal \(\frac{1}{5} \). Have your friend write the equations below.

Friend’s name ____________________________

On today’s activity: (Circle one) I did great! I did OK. I need some help.

Name ____________________________ Date ____________
Get Started Rule out two. Write why. Fill in the correct circle.

Heather had \(\frac{7}{9} \) of a tank of gasoline in her car. She used \(\frac{1}{2} \) of a tank of gas running errands. How much gasoline remains in her gas tank?

A \(\frac{6}{7} \) of a tank

B \(\frac{14}{18} \) of a tank

C \(\frac{7}{18} \) of a tank

D \(\frac{5}{18} \) of a tank

Today’s Challenge

1. Mr. Donatello saves all of his work on a computer disk. He had filled \(\frac{2}{3} \) of a disk with information. Yesterday he erased \(\frac{1}{4} \) of the entire disk. How much of the disk still contains information?

A \(\frac{3}{7} \)

B \(\frac{8}{12} \)

C \(\frac{5}{12} \)

D \(\frac{1}{7} \)

2. Drew is writing a paper for history class. He had finished \(\frac{7}{10} \) of the paper. Yesterday he realized he had lost \(\frac{1}{3} \) of the entire paper. How much of the paper does Drew still have?

A \(\frac{6}{7} \)

B \(\frac{11}{30} \)

C \(\frac{8}{30} \)

D \(\frac{7}{30} \)

Total points for Today’s Challenge:

On today’s activity: (Circle one) I did great! I did OK. I need some help.
Today's Challenge You will make a pictograph to display the Favorite Flower Survey data.

1. Draw the symbol you will use to show the votes for each flower.

2. Each symbol will stand for three votes. How many symbols will you draw in the Rose row?

3. Complete the graph by drawing your symbols.

4. Which flower is most popular?

5. Which flower is least popular?

Go Further

6. Sit quietly in your seat and look around. How many students do you see wearing blue?

7. Complete the survey table.

8. Create a pictograph to display your data. Your symbol should represent more than one wearer, so be sure to include a key. Use another sheet of paper.

On today’s activity: (Circle one) I did great! I did OK. I need some help.

Name Date
Today's Challenge: Start with the given number. Give at least two arithmetic directions that get you to the end number.

Example: Start with 3, end with 10
\[3^2 + 1\]
\[(3 + 2) \times 2\]

1. Start with 15, end with 45.
2. Start with 4, end with 24.

Now, start with the given number and give at least three arithmetic directions that get you to the end number.

4. Start with 6, end with 36.
5. Start with 5, end with 100.
6. Start with 1, end with 6.
7. Start with 100, end with 30.
8. Start with 2, end with 80.
9. Start with 3, end with 100.
10. Start with 2, end with 24.

Go Further: Show eight ways to make 40.

11. Add two numbers that have decimal points.
12. Subtract two numbers.
13. Add three numbers, none of which has the digit one.
15. Use mixed numbers.
16. Add numbers that are the same.
17. Use an easy way.
18. Use a hard way.

On today's activity: (Circle one) I did great! I did OK. I need some help.
Get Started For each question, write yes or no.

1. Does 1896 round to 1000? _________
2. When 1896 is rounded to the nearest thousand and multiplied by 6, is 6000 a reasonable estimate? _________
3. When 1896 is rounded to the nearest thousand and multiplied by 8, is 16,000 a reasonable estimate? _________
4. Does 1896 round to 2000? _________
5. Does 575 round to 1000? _________
6. When 575 is rounded to the nearest thousand and multiplied by 4, is the estimated product greater than 5000? _________
7. When 575 is rounded to the nearest thousand and multiplied by 5, is the estimated product equal to 5000? _________
8. When 575 is rounded to the nearest thousand does it round to 0? _________

Go Further Solve this riddle.

9. Blue:
 - I am the estimated product of 1460×5.
 - I am greater than 4500 and less than 5500.
 - To find me, you only round 1460.

 What number am I? ___________________________

10. Now write your own riddle for a friend to solve.
 Blue: ______________________________________

 What number am I? __________________________

 Friend’s name ______________________________

On today’s activity: (Circle one) I did great! I did OK. I need some help.

Name __________________________

Date __________________________
Today’s Challenge Find strings of digits that can be used to make multiplication equations for decimal factors less than 1. One factor must be a decimal to the hundredths place. The other factor must be a decimal to the tenths place. The product is given. You must supply the zeroes in the ones places of both factors.

Example:

<table>
<thead>
<tr>
<th>Product</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.252</td>
<td>$0.36 \times 0.7 = 0.252$, or $0.84 \times 0.3 = 0.252$</td>
</tr>
</tbody>
</table>

1. 0.136
2. 0.215
3. 0.145
4. 0.216
5. 0.128

Go Further Create your own Math Jumble. Include at least three strings of digits that can be used to make multiplication equations for decimal factors less than 1. One factor must be a decimal to the hundredths place. The other factor must be a decimal to the tenths place. Have a friend use your Math Jumble to find the equations you have written. You must give the three products to your friend. Your friend must supply the zeroes in the ones places of both factors.

<table>
<thead>
<tr>
<th>Product</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Friend’s name ____________________________

On today’s activity: (Circle one) I did great! I did OK. I need some help.
Get Started Rule out two. Write why. Fill in the correct circle.

Study the equations below.

\[80 \times 10 = 800 \quad 80 \times 100 = 8000 \quad 80 \times 1000 = 80,000 \]

Which of these equations began the sequence of this pattern?

A \[8 \times 10 = 80 \]
B \[8 \times 1 = 8 \]
C \[80 \times 1 = 80 \]
D \[80 \times 0 = 0 \]

Today's Challenge

1. Study the equations below.

\[300,000 \div 10 = 30,000 \quad 300,000 \div 100 = 3000 \quad 300,000 \div 1000 = 300 \]

Which of these equations will continue this pattern?

A \[300,000 \div 10,000 = 300 \]
B \[30,000 \div 10,000 = 30 \]
C \[300,000 \div 10,000 = 30 \]
D \[300,000 \div 10,000 = 3 \]

2. Study the equations below.

\[8.2 \times 0.01 = 0.082 \quad 8.2 \times 0.1 = 0.82 \quad 8.2 \times 1.0 = 8.2 \quad 8.2 \times \square = 82 \]

Which of these numbers when written in the box will continue the pattern?

A \[100 \]
B \[10 \]
C \[1.00 \]
D \[0.10 \]

Total points for Today's Challenge:

On today's activity: (Circle one) I did great! I did OK. I need some help.

Name

Date
Today's Challenge You will make a line plot to show the bedtime data.

Usual Bedtime

<table>
<thead>
<tr>
<th>Name</th>
<th>Bedtime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marty</td>
<td>8:15 P.M.</td>
</tr>
<tr>
<td>Manuel</td>
<td>8:30 P.M.</td>
</tr>
<tr>
<td>Moise</td>
<td>8:30 P.M.</td>
</tr>
<tr>
<td>Margie</td>
<td>8:00 P.M.</td>
</tr>
<tr>
<td>Maria</td>
<td>8:45 P.M.</td>
</tr>
<tr>
<td>Max</td>
<td>9:00 P.M.</td>
</tr>
<tr>
<td>Michelle</td>
<td>8:15 P.M.</td>
</tr>
<tr>
<td>Misty</td>
<td>8:00 P.M.</td>
</tr>
<tr>
<td>Mike</td>
<td>8:30 P.M.</td>
</tr>
<tr>
<td>Monty</td>
<td>8:45 P.M.</td>
</tr>
</tbody>
</table>

1. What will be the first and last times on your number line?

2. You need to be sure that each time has a home on your plot. What time interval will you use on your number line?

3. Make your line plot.

4. What is the most common bedtime? _______

What is the least common bedtime? _______

Go Further

5. Create a line plot showing the digits in your phone number and six other phone numbers you know. If you don’t know six more numbers, look some up in the phone book.

6. What is the most frequent digit? _______

What is the least frequent digit? _______

On today’s activity: (Circle one) I did great! I did OK. I need some help.
Today's Challenge Choose answers from this box. You will not use all the answers

1. Find a fraction whose numerator is the only even prime number. ___________
 900
 47
 7
 8
 110
2. Find a square number between 26 and 48. ___________
 2643
 92
 84
3. Find a prime number that is very near 48. ___________
 0.25
 24
 15
 16
4. Find a decimal that is equivalent to half of a half. ___________
 36
5. Find a two-digit number greater than 50. Its digits are different and even, and the sum of its digits is 12. ___________
 Find three more than the number of feet in a half-mile. ___________
 Find a three-digit multiple of 100. The sum of its digits is 9. ___________
 Find a two-digit number between 15 and 35 that can be evenly divided by 2, 3, or 4. ___________
 Find the sum of \(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} \). ___________
 Find a three-digit even number. The sum of its digits is 2. ___________

Go Further

11. Write the answers to exercises 1–10 in order from least to greatest.

12. Find the difference between the greatest and least numbers in the box.

13. Find three numbers in the box whose sum is 226.

14. Use any numbers in the box and any operations. Write an expression whose value is 30.

On today's activity: (Circle one) I did great! I did OK. I need some help.

Name __________________________ Date __________________________
Get Started For each question, write yes or no.

1. Is 57 a multiple of 9? __________

2. Is 57 an even number? __________

3. Is the sum of the digits in 57 evenly divisible by 3? __________

4. Is 57 a prime number? __________

5. Is 73 an even number? __________

6. Is 73 a multiple of 5 or 10? __________

7. Is the sum of the digits in 73 evenly divisible by 3? __________

8. Is 73 a prime number? __________

Go Further Solve this riddle.

9. BLUES:
 - I am a prime number between 50 and 100.
 - I am greater than 50 and less than 70.
 - I am greater than 9×7.

 What number am I? _________________________

10. Now write your own riddle for a friend to solve.

 BLUES: __

 __

 __

 What number am I? _________________________

 Friend’s name ________________________________

On today’s activity: (Circle one) I did great! I did OK. I need some help.
Today's Challenge: Find one proper and one improper fraction that, when added, yield a sum greater than 1 and less than 2. Fractions must have like denominators.

1 5 3 5
5 5 1 4
6 2 4 3
4 3 1 2

Write the equations and simplify.

Go Further: Create your own Math Jumble. Include at least five pairs of one proper and one improper fraction that, when added, yield a sum greater than 1 1/2 and less than 2 1/2. Fractions must have like denominators. Have a friend use your Math Jumble to find the equations you have written. Have your friend write the equations and simplify.

Friend's name ____________________________

On today's activity: (Circle one) I did great! I did OK. I need some help.

Name ___________________________________

Date ____________________________
Get Started Rule out two. Write why. Fill in the correct circle.

One piece of construction paper is 26 centimeters long. How long would two pieces of construction paper laid end-to-end measure?

A 0.28 meter ____________________
B 0.42 meter ____________________
C 0.52 meter ____________________
D 0.61 meter ____________________

Today’s Challenge

1. Write your own question and answer choices to share with the other groups.

__

A ____________________ B ____________________ C ____________________ D ____________________

2. Write your own question and answer choices to share with the other groups.

__

A ____________________ B ____________________ C ____________________ D ____________________

Total points for Today’s Challenge: ____________________

On today’s activity: (Circle one) I did great! I did OK. I need some help.

170 Name Date
Today's Challenge

1. If the values are equal, what is the ratio of pennies to nickels? ________________
 Nickels to pennies? ________________

2. If the values are equal, what is the ratio of pennies to dimes? ________________
 Dimes to pennies? ________________

3. If the values are equal, what is the ratio of half-dollars to $5-bills? ________________
 $5-bills to half-dollars? ________________

4. Use a ratio from exercise 3 to fill in the table.

<table>
<thead>
<tr>
<th>Half-dollars</th>
<th>$5-bills</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Go Further

5. Look at the coin and bill collection. Use it to fill in the table. Write your answers with a colon and as a whole number or fraction in simplest form. The first is done for you.

<table>
<thead>
<tr>
<th>Ratio</th>
<th>With Colon</th>
<th>Simplest Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>pennies to dollar bills</td>
<td>3:6</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>nickels to quarters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pennies to nickels</td>
<td></td>
<td></td>
</tr>
<tr>
<td>quarters to half-dollars</td>
<td></td>
<td></td>
</tr>
<tr>
<td>half-dollars to dollar bills</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

On today's activity: (Circle one) I did great! I did OK. I need some help.

Name

Date
Today's Challenge All the decimal points are missing. Use a colored marker, pencil or pen. Put the decimal point where it belongs so that the number makes sense.

1. A number equivalent to $\frac{1}{2}$
2. A little more than $1 \frac{1}{3}$
3. The number of liters in a bottle of soda
4. 25×0.25
5. The number of hours from 8 A.M. to 4:30 P.M.
6. A reasonable weight for a first-grader
7. A reasonable height for a fifth-grader
8. Half of 70
9. $\frac{1}{5}$ of 70
10. Halfway between 17 and 18

Go Further Place decimal points so the numbers in these sentences make sense.

11. I weigh 8 1 4 5 pounds.
12. I bought 2 0 6 pounds of oranges.
13. The gym socks I bought cost $3 5 0.
14. My birthday party lasted 2 5 hours.
15. Write two of your own missing-decimal sentences for a friend to fix.

Friend’s name

On today's activity: (Circle one) I did great! I did OK. I need some help.
Today's Challenge Complete the table.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>$\frac{7}{5}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>$\frac{22}{3}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>$\frac{5}{3}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>$\frac{42}{3}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td>$\frac{9}{4}$</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>$\frac{21}{5}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>$\frac{7}{6}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td></td>
<td>$\frac{13}{7}$</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td></td>
<td>$\frac{7}{4}$</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>$\frac{21}{7}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

On today's activity: (Circle one)
I did great! I did OK. I need some help.

Name
Date
Today's Challenge: Find strings of digits that can be used to make addition equations for decimals. Each addend and the sum will have its own string of three digits.

Write the equations you make.

[Grid with numbers: 3 5 4 6, 2 1 3 1, 5 6 7 7, 7 8 0 8]

Go Further: Make your own Math Jumble. Include at least three complete addition equations for three-digit decimals (a total of 6 addends in three groups of two, and 3 sums). Each addend and the sum should have its own string of digits. Have a friend use your Math Jumble to find the equations you have written. Have your friend write the equations below.

[Grid for equations]

Friend’s name _______________________

On today’s activity: (Circle one) I did great! I did OK. I need some help.

© Great Source. Permission is granted to copy this page.
Get Started Rule out two. Write why. Fill in the correct circle.

Rectangle $ABCD$ is congruent to rectangle $KLMN$. What is the area of rectangle $KLMN$?

A 9 square inches
B 14 square inches
C 18 square inches
D 36 square inches

Today's Challenge
1. Draw and label two congruent rectangles or squares. Write your own question and answer choices about perimeter to share with the other groups.

A
B
C
D

2. Draw and label two congruent rectangles or squares. Write your own question and answer choices about area to share with the other groups.

A
B
C
D

Total points for Today's Challenge: ______

On today's activity: (Circle one) I did great! I did OK. I need some help.

Name
Date 175
Today’s Challenge When you graph points and they can be connected with a straight line, the relationship you are graphing is linear.

1. Is the relationship between number of weeks and number of days linear? ______
 Make a table and draw a graph to show your answer.

<table>
<thead>
<tr>
<th>Weeks</th>
<th>Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

2. You have a collection of nickels with the same value as your collection of quarters. Is the relationship between number of nickels and number of quarters linear? ______
 Make a table and draw a graph to show your answer.

<table>
<thead>
<tr>
<th>Quarters</th>
<th>Nickels</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Is the relationship between number of days and number of years linear? ______
 Explain your answer. __

Go Further

4. Describe three linear relationships. Trade with a friend to make a table of values and a graph for each. Use another sheet of paper.

Friend’s name ____________________________

On today’s activity: (Circle one) I did great! I did OK. I need some help.
Today's Challenge: Use the answer to an exercise as your starting place for the next exercise. When you add all ten answers, you should have a sum of 219.

1. Start with the number of months in a year.
2. Divide by three.
3. Multiply by a half-dozen.
4. Subtract the number of pennies in a nickel.
5. Subtract the number of sides on a triangle.
6. Subtract the number of feet in a yard.
7. Add the number of inches in a foot.
8. Double the number.
9. Subtract the number of days in most Februaries.
10. Add a dozen.

Check sum: 219

Go Further: Ask a friend to solve your puzzles.

11. Write a puzzle like the one above. Start with 5 and end with 40. Use three or more steps.

12. Write a puzzle of any length. Start with 100 and end with 84.

Friend's name ________________________________

On today's activity: (Circle one) I did great! I did OK. I need some help.

Name ____________________________ Date ________
Today's Challenge

Complete the table.

<table>
<thead>
<tr>
<th>Given Fraction</th>
<th>Fraction</th>
<th>Fraction</th>
<th>Fraction</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (\frac{1}{2})</td>
<td>4</td>
<td>100</td>
<td>(\frac{10}{10})</td>
<td></td>
</tr>
<tr>
<td>2. (\frac{1}{4})</td>
<td>100</td>
<td>8</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3. (\frac{1}{5})</td>
<td>10</td>
<td>100</td>
<td>(\frac{20}{20})</td>
<td></td>
</tr>
<tr>
<td>4. (\frac{2}{5})</td>
<td>10</td>
<td>100</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

5. What are three other fractions that are equivalent to \(\frac{1}{2}\)?

On today's activity: (Circle one)
I did great!
I did OK.
I need some help.
Today’s Challenge You gave the cashier $5.00. Loop a string of coins and bills that add up to the correct change for each purchase. Then list the coins and bills you looped.

1. Your purchase is $2.85.
2. Your purchase is $3.73.
3. Your purchase is $2.63.
4. Your purchase is $2.69.
5. Your purchase is $1.52.

Go Further Write a brief explanation of the method you used to make the correct change. Demonstrate by using two of the above purchase amounts as examples.

On today’s activity: (Circle one) I did great! I did OK. I need some help.
Get Started Rule out two. Write why. Fill in the correct circle.

The factors of 30 are 1, 2, 3, 5, 6, 10, 15, and 30. Which of these factors are prime?

A 1, 2, 3, 5
B 1, 2, 3
C 2, 3, 5
D 2, 3

Today’s Challenge

1. Write your own question and answer choices to share with the other groups.

A
B
C
D

2. Write your own question and answer choices to share with the other groups.

A
B
C
D

Total points for Today’s Challenge:

On today’s activity: (Circle one) I did great! I did OK. I need some help.

180 Name Date
Fill in the circle for the best answer.

1. $4,000,000 + 50,000 + 8000 + 40 + 1 =$
 - A 4,058,041
 - B 45,841
 - C 45,8041
 - D 4,508,401

2. Which is not a way to write one tenth?
 - A 0.1
 - B 0.10
 - C $\frac{2}{10}$
 - D 10%

3. Round 1349 to the nearest hundred.
 - A 1.39
 - B 1300
 - C 1400
 - D 300

4. Round 52.017 to the nearest hundredth.
 - A 52.01
 - B 52.02
 - C 52.018
 - D 52.00

5. Which number has a 3 in the thousandths place?
 - A 1.360
 - B 6.103
 - C 3.061
 - D 0.631

6. Shade in $\frac{3}{4}$ of this box.

 [Diagram of a box with 4 rows and 4 columns, 3 boxes shaded]

7. Which answer choice shows a list of prime numbers?
 - A 3, 5, 7
 - B 1, 2, 5
 - C 2, 5, 9
 - D 11, 13, 15

8. The school store just received 7 cases of ballpoint pens. Each case holds 144 pens. Which number is a good estimate of how many pens there are altogether?
 - A 700
 - B 800
 - C 1500
 - D 1000
Match. Write the correct letter in the blank.

9. _____ $\frac{3}{4}$
10. _____ 0.8
11. _____ 2.1
12. _____ $\frac{25}{100}$

a. $\frac{21}{10}$
b. $\frac{1}{4}$
c. 0.75
d. $\frac{4}{5}$

13. Loop the two fractions that name the same amount.

$\frac{2}{5}$ $\frac{5}{10}$ $\frac{5}{2}$ $\frac{4}{10}$

Write these numbers in order from least to greatest.

14. 0.2 0.02 0.12 0.21

15. 3.4 0.34 340 0.04 0.3

16. Write the first five multiples of 6 other than 0.

17. Write the first five multiples of 3 other than 0.

18. What is the least common multiple of 3 and 6?

19. What is the least common multiple of 7 and 6?

20. List the numbers from the box above that are evenly divisible by 2.

21. List the numbers from the box above that are evenly divisible by 3.

22. List the numbers from the box above that are evenly divisible by both 2 and 6.

23. List the numbers from the box above that are prime.
Choose the best answer or fill in the blank for each question.

Use each number once to write two different multiplication facts.

\[
\begin{array}{cccccc}
2 & 5 & 7 & 9 & 18 & 35 \\
1. \quad & \quad \times \quad & = & \\
2. \quad & \quad \times \quad & = & \\
\end{array}
\]

Use each number once to write two different addition facts.

\[
\begin{array}{cccccc}
5 & 7 & 8 & 9 & 13 & 16 \\
3. \quad + \quad & = & \\
4. \quad + \quad & = & \\
\end{array}
\]

Follow the directions and write the answers in the blanks.

Pick any even number between 1 and 10: ______

5. Then multiply it by 5: ______

6. Add 20 to that product: ______

7. Divide that sum by 10: ______

8. Subtract 2 from that quotient: ______

9. Double that answer: ______

Multiply.

\[
\begin{array}{c}
10. \quad 145 \\
\times 0.01 \\
\hline
11. \quad 146 \\
\times 25 \\
\end{array}
\]

Divide.

\[
\begin{array}{c}
12. \quad 2184 \\
\hline
13. \quad 6421 \\
\end{array}
\]

Name

Date
14. Loop the problem that will have the greatest answer.
 \[198 \times 2 \quad 81 \times 3\]
 \[26 \times 10 \quad 955 \times 0\]

15. Loop all the numbers that represent an amount equal to one half.
 \[\frac{1}{2} \quad 2\% \quad 50\% \quad 0.02 \quad 0.5 \quad 0.05 \quad 0.50\]
 \[\frac{3}{6} \quad \frac{4}{5} \quad \frac{50}{100} \quad \frac{5}{10} \quad 1.2 \quad 0.2 \quad \frac{1}{2}\%\]

Fill in the circle for the best answer.

16. \[6 + 2.5 =\]
 \[\text{A} \quad 3.1\]
 \[\text{B} \quad 8.5\]
 \[\text{C} \quad 31\]
 \[\text{D} \quad 6.25\]

17. \[32 - 1.75 =\]
 \[\text{A} \quad 29.25\]
 \[\text{B} \quad 14.5\]
 \[\text{C} \quad 30.25\]
 \[\text{D} \quad 29.75\]

18. \[27 + 0.75 =\]
 \[\text{A} \quad 27.75\]
 \[\text{B} \quad 102\]
 \[\text{C} \quad 11.02\]
 \[\text{D} \quad 134.5\]

19. \[0.43 + 0.58 =\]
 \[\text{A} \quad 1.10\]
 \[\text{B} \quad 1.01\]
 \[\text{C} \quad 0.99\]
 \[\text{D} \quad 1.00\]

Compute. Simplify whenever possible.

20. \[\frac{2}{5} + \frac{2}{5} =\]
21. \[\frac{1}{4} + \frac{1}{2} =\]

22. \[\frac{1}{3} + \frac{1}{5} =\]
23. \[\frac{4}{7} + \frac{5}{7} =\]

24. \[\frac{1}{2} \times \frac{1}{4} =\]
25. \[\frac{1}{4} \times 100 =\]

26. \[\frac{2}{3} - \frac{1}{4} =\]
27. \[\frac{9}{10} - \frac{5}{10} =\]

28. Kayla bought a comic book that cost $2.65. She paid with a $5.00 bill. How much change will she get back?
Loop each shape that is a quadrilateral.

1. [Diagrams of various quadrilaterals]

Match. Write the letter of the correct name for each shape.

2. [Diagram of a shape] → a. parallelogram
3. [Diagram of a shape] → b. rectangle
4. [Diagram of a shape] → c. trapezoid
5. [Diagram of a shape] → d. hexagon

6. Loop the rectangular prism.

[Diagrams of a cylinder, a rectangular prism, and a triangular prism]

7. Loop the figure that is not a pyramid.

[Diagrams of pyramids and a rectangular prism]

8. Loop the obtuse isosceles triangle.

[Diagrams of triangles with sides of 8m and an obtuse angle]
9. The area of this floor is ________ square yards.

2 yards
4 yards

The perimeter of this floor is ________ yards.

10. The area of this floor is ________ square feet.

7 feet
9 feet

The perimeter of this floor is ________ feet.

Use the words obtuse, acute, and right to label the angles below.

11. ________
12. ________
13. ________

14. Which line is perpendicular to line AC?
 A line AE
 B line DF
 C line BE
 D line DC

15. Which point is at (2, 2)? ________
16. Which point is at (5, 3)? ________
17. What is the location of point C? ________
Fill in the circle for the best answer.

1. Which might weigh about 1 pound?
 A) a pen
 B) a book
 C) a desk
 D) a car

2. Which might weigh about 1 gram?
 A) a pea
 B) an apple
 C) a slice of bread
 D) a carton of milk

3. Which might be the length of a new pencil?
 A) 18 millimeters
 B) 18 inches
 C) 18 meters
 D) 18 centimeters

4. Which might be the temperature of a hot summer day?
 A) 0° Celsius
 B) 100° Celsius
 C) 80° Fahrenheit
 D) 32° Fahrenheit

5. Which tool would you use to measure ingredients for a cake?
 A) a meter stick
 B) a thermometer
 C) a measuring cup
 D) a stopwatch

6. How long is this pencil? ______

 ![Ruler](image)

 inches

7. Draw a pencil $5\frac{3}{4}$ inches long.

 ![Ruler](image)

 inches
8. If school starts at 8:45 and ends at 3:00, how many hours and minutes does one school day last?

9. If you begin your car trip at the time shown on the first clock, and end the car trip on the same day at the time shown on the second clock, how long did the trip last?

The total cost of a purchase is $2.18, and you pay with a $5.00 bill.

10. How much money should you get back in change?

11. List the coins you would expect to get.

Loop the best answer.

12. ounces in a pound 4 12 16
13. cups in a quart 2 4 8
14. degrees Fahrenheit water freezes 0 12 32
15. inches in a yard 12 36 100
16. centimeters in a meter 10 100 1000
17. milliliters in a liter 10 100 1000
18. feet in a mile 36 365 5280
19. hours in a day 10 24 48
20. days in a year 365 440 1000

21. Write each word from the box in the correct column in the table.

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>thermometer</td>
<td>pounds</td>
<td>centimeters</td>
<td>miles</td>
<td>ounces</td>
<td>hours</td>
<td></td>
</tr>
<tr>
<td>minutes</td>
<td>quarts</td>
<td>gallons</td>
<td>Celsius</td>
<td>tons</td>
<td>yards</td>
<td></td>
</tr>
<tr>
<td>degrees</td>
<td>clock</td>
<td>decades</td>
<td>miles</td>
<td>cups</td>
<td>scale</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Capacity</th>
<th>Time</th>
<th>Weight</th>
<th>Length/distance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Continue each pattern. Then write the rule for the pattern.

1. 2020, 2040, 2060, __________, __________, __________
 Rule: ___

2. \(\frac{1}{3}, \frac{2}{6}, \frac{3}{9}, \frac{4}{12}, \) __________, __________, __________
 Rule: ___

3. 7.6, 7.3, 7.0, 6.7, __________, __________, __________
 Rule: ___

4. Look at the two sets of numbers. Then write the number 18 in the ring where it belongs.

 ![Rings with numbers](image)

5. Look at the two sets of numbers. Then write the number 24 in the ring where it belongs.

 ![Rings with numbers](image)

6. Loop the expression that shows the number of legs on \(d \) dogs.

 \[4 \times d \quad 4 + d \quad 4 - d \quad \frac{4}{d} \]

7. Loop the expression that shows the number of yards in \(f \) feet.

 \[\frac{f}{12} \quad \frac{f}{36} \quad \frac{f}{3} \quad f \times 3 \]
Find the value of the expression $h + 5$—

8. if $h = 13$.

9. if $h = 113$.

10. Complete the table and write the rule.
 Rule:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>49</td>
</tr>
</tbody>
</table>

11. Complete the table and write the rule.
 Rule:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>21</td>
</tr>
<tr>
<td>5</td>
<td>35</td>
</tr>
<tr>
<td>8</td>
<td>63</td>
</tr>
</tbody>
</table>

Match. Write the letter of the expression with the same value.

12. ____ $(7 + 8) \times 10$
 a. $671 + 394$

13. ____ 671×394
 b. $(25 \times 4) \times 7$

14. ____ $15 \times 19 + 1$
 c. $5 \times 19 \times 3$

15. ____ $25 \times (4 \times 7)$
 d. 876×0

16. ____ $5 \times 19 \times 3 \times 1$
 e. 15×10

17. ____ $394 + 671$
 f. $5 \times 19 \times 3 + 1$

18. ____ $5 \times 19 \times 3 \times 0$
 g. 394×671